-
利用非平衡格林函数结合密度泛函理论, 研究了顺式蒽二噻吩和反式蒽二噻吩分子连接锯齿边碳化硅纳米带的自旋输运特性, 并在铁磁场下观察到自旋向上和自旋向下具有同方向的自旋整流特性. 在铁磁场下, 边缘碳原子或者硅原子双氢原子钝化可以改变锯齿边碳化硅纳米带的本征金属性, 使其转变为半导体. 顺式蒽二噻吩器件和反式蒽二噻吩器件的自旋向上电流-电压特性可以呈现显著的自旋整流效应, 相应的最大自旋整流比分别接近1011和1010. 此外, 由于自旋向上和自旋向下电流值之间的巨大差异, 两个器件的电流-电压特性都在正偏压区域呈现出完美的自旋过滤行为. 以上发现对未来设计自旋功能分子器件具有重要意义.Using non-equilibrium Green's function combined with density functional theory, we investigate the spin-resolved transport properties of the zigzag SiC nanoribbon (zSiCNR) connecting anthradithiophene (ADT) molecules and obtain the giant spin current rectification in the presence of a ferromagnetic field. The dual-hydrogenation on edge C atoms or Si atoms can change the initial metallicity of the pristine zSiCNR with the edge mono-hydrogenation into semiconductivity in the presence of a ferromagnetic field. The up-spin current-voltage characteristic of the cis-ADT device and the trans-ADT device can present the significant rectification, and the corresponding giant spin current rectification ratios are close to 1011 and 1010 respectively. In addition, the current-voltage characteristics of two devices both perform a perfect spin filtering behavior in the positive bias region due to the huge difference between the up-spin current value and the down-spin current value. These findings are of great significance in the functional applications of spin-resolved molecular devices in the future.
-
Keywords:
- SiC nanoribbon /
- spin-resolved transport property /
- spin current rectification /
- spin filtering
[1] Service R 2009 Science 323 1000Google Scholar
[2] Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223Google Scholar
[3] Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S, Wang L W 2020 Sci. China-Phys. , Mech. Astron. 63 277312Google Scholar
[4] 郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303Google Scholar
Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar
[5] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar
[6] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar
[7] Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar
[8] Chen X K, Hu X Y, Jia P J, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar
[9] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar
[10] 左敏, 廖文虎, 吴丹, 林丽娥 2019 物理学报 68 237302Google Scholar
Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar
[11] Kuang G, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570Google Scholar
[12] Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar
[13] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar
Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar
[14] Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar
[15] Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar
[16] Feringa B L 2020 Adv. Mater. 32 1906416Google Scholar
[17] Xin N, Li X X, Jia C C, Gong Y, Li M L, Wang S P, Zhang G Y, Yang J L 2018 Angew. Chem. Int. Ed. 57 14026Google Scholar
[18] Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar
[19] ChenQ, LiLL, PeetersFM 2018 Phys. Rev. B 97 085437Google Scholar
[20] An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar
[21] Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar
[22] Ning F, Chen S Z, Zhang Y, Liao G H, Tang P Y, Li Z L, Tang L M 2019 Appl. Surf. Sci. 496 143629Google Scholar
[23] Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar
[24] Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar
[25] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar
[26] Magda G Z, Jin X, Hagy I, Vancsó P, Osváth Z, Nemes P, Hwang C, Biró L, Tapasztó L 2014 Nature 514 608Google Scholar
[27] Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X, Zhang H L 2016 Org. Electron. 37 245Google Scholar
[28] Liu Q, Cui X Q, Fan Z Q 2020 Phys. Lett. A 384 126732Google Scholar
[29] Zhou X Y, Liu Y M, Zhou M, Shao H H, Zhou G H 2014 Appl. Phys. Express 7 021201Google Scholar
[30] Yan X F, Chen Q, Li L L, Guo H Z, Peng J Z, Peeters F M 2020 Nano Energy 75 104953Google Scholar
[31] Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar
[32] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar
[33] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar
[34] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷 婷, 刘洋 2018 物理学报 67 118501Google Scholar
Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar
[35] Peng X F, Chen K Q, Wang X J, Tan S H 2016 Carbon 100 36Google Scholar
[36] Liao W H, Zhao H P, Ouyang G, Chen K Q, Zhou G H 2012 Appl. Phys. Lett. 100 153112Google Scholar
[37] Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar
[38] 崔兴倩, 刘乾, 范志强, 张振华 2020 物理学报 69 248501Google Scholar
Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Acta Phys. Sin. 69 248501Google Scholar
[39] Li J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Carbon 93 335Google Scholar
[40] Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar
[41] Mamada M, Katagiri H, Mizukami M, Honda K, Minamiki T, Teraoka R, Uemura T, Tokito S 2013 ACS Appl. Mater. Interfaces 5 9670Google Scholar
[42] Wang W C, Yeh T T, Liau W L, Chen J T, Hsu C S 2018 Org. Electron. 57 82Google Scholar
[43] Su G R, Yang S, Li S, Butch C J, Filimonov S N, Ren J C, Liu W 2019 J. Am. Chem. Soc. 141 1628Google Scholar
[44] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. :Condens. Matter 32 015901Google Scholar
[45] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar
[46] Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar
[47] Sun L, Li Y F, Li Z Y, Li Q X, Zhou Z, Chen Z F, Yang J L, Hou J G 2008 J. Chem. Phys. 129 174114Google Scholar
[48] Chen W, Zhang H, Ding X L, Yu G T, Liu D, Huang X R 2014 J. Mater. Chem. C 2 7836Google Scholar
[49] Shen X P, Yu G T, Zhang Z S, Liu J W, Li H, Huang X R, Chen W 2017 J. Mater. Chem. C 5 2022Google Scholar
[50] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar
[51] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar
[52] Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J. Mater. Chem. C 2 6648Google Scholar
[53] Fan Z Q, Xie F, Jiang X W, Wei Z M, Li S S 2016 Carbon 110 200Google Scholar
-
图 1 两种器件的几何结构示意图. 左、右黑色实心线框分别是左、右电极, 为不同边缘双氢原子钝化锯齿边碳化硅纳米带的两个晶胞; 自旋向上和自旋向下状态的自旋极化电荷密度差的等值图, 等值均设置为0.05|e| Å–3 (1 Å = 0.1 nm)
Fig. 1. Schematic geometric structures of two devices. The left and right black solid wire frames are the left and the right electrode, which are two unit cells of zigzag SiCnanoribbon under different edge dual-hydrogenation. Isosurface plots of the spin-polarized charge density difference of up-spin and down-spin states with the isovalues all setting at 0.05|e| Å–3 (1 Å = 0.1 nm).
图 2 (a)底部边缘硅原子双氢原子钝化的锯齿边碳化硅纳米和(b)顶部边缘碳原子双氢原子钝化的锯齿边碳化硅纳米的几何结构与自旋能带结构
Fig. 2. Geometric structures and spin-resolved band structures of (a) the zigzag SiC nanoribbon with the dual-hydrogenation on the silicon atom of the bottom edge and (b) the zigzag SiC nanoribbon with the dual-hydrogenation on the carbon atom of the top edge
图 4 (a) 零偏压下左、右电极和中央蒽二噻吩的自旋向上投影态密度; (b) 零偏压下左、右电极和中心蒽二噻吩的自旋向下投影态密度.
Fig. 4. (a) The up-spinprojecteddensity of states of left electrode, right electrode and central anthradithiophene at zero bias voltage; (b) the down-spinprojecteddensity of states of left electrode, right electrode and central anthradithiophene at zero bias voltage.
-
[1] Service R 2009 Science 323 1000Google Scholar
[2] Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223Google Scholar
[3] Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S, Wang L W 2020 Sci. China-Phys. , Mech. Astron. 63 277312Google Scholar
[4] 郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303Google Scholar
Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar
[5] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar
[6] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar
[7] Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar
[8] Chen X K, Hu X Y, Jia P J, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar
[9] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar
[10] 左敏, 廖文虎, 吴丹, 林丽娥 2019 物理学报 68 237302Google Scholar
Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar
[11] Kuang G, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570Google Scholar
[12] Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar
[13] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar
Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar
[14] Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar
[15] Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar
[16] Feringa B L 2020 Adv. Mater. 32 1906416Google Scholar
[17] Xin N, Li X X, Jia C C, Gong Y, Li M L, Wang S P, Zhang G Y, Yang J L 2018 Angew. Chem. Int. Ed. 57 14026Google Scholar
[18] Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar
[19] ChenQ, LiLL, PeetersFM 2018 Phys. Rev. B 97 085437Google Scholar
[20] An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar
[21] Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar
[22] Ning F, Chen S Z, Zhang Y, Liao G H, Tang P Y, Li Z L, Tang L M 2019 Appl. Surf. Sci. 496 143629Google Scholar
[23] Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar
[24] Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar
[25] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar
[26] Magda G Z, Jin X, Hagy I, Vancsó P, Osváth Z, Nemes P, Hwang C, Biró L, Tapasztó L 2014 Nature 514 608Google Scholar
[27] Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X, Zhang H L 2016 Org. Electron. 37 245Google Scholar
[28] Liu Q, Cui X Q, Fan Z Q 2020 Phys. Lett. A 384 126732Google Scholar
[29] Zhou X Y, Liu Y M, Zhou M, Shao H H, Zhou G H 2014 Appl. Phys. Express 7 021201Google Scholar
[30] Yan X F, Chen Q, Li L L, Guo H Z, Peng J Z, Peeters F M 2020 Nano Energy 75 104953Google Scholar
[31] Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar
[32] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar
[33] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar
[34] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷 婷, 刘洋 2018 物理学报 67 118501Google Scholar
Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar
[35] Peng X F, Chen K Q, Wang X J, Tan S H 2016 Carbon 100 36Google Scholar
[36] Liao W H, Zhao H P, Ouyang G, Chen K Q, Zhou G H 2012 Appl. Phys. Lett. 100 153112Google Scholar
[37] Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar
[38] 崔兴倩, 刘乾, 范志强, 张振华 2020 物理学报 69 248501Google Scholar
Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Acta Phys. Sin. 69 248501Google Scholar
[39] Li J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Carbon 93 335Google Scholar
[40] Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar
[41] Mamada M, Katagiri H, Mizukami M, Honda K, Minamiki T, Teraoka R, Uemura T, Tokito S 2013 ACS Appl. Mater. Interfaces 5 9670Google Scholar
[42] Wang W C, Yeh T T, Liau W L, Chen J T, Hsu C S 2018 Org. Electron. 57 82Google Scholar
[43] Su G R, Yang S, Li S, Butch C J, Filimonov S N, Ren J C, Liu W 2019 J. Am. Chem. Soc. 141 1628Google Scholar
[44] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. :Condens. Matter 32 015901Google Scholar
[45] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar
[46] Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar
[47] Sun L, Li Y F, Li Z Y, Li Q X, Zhou Z, Chen Z F, Yang J L, Hou J G 2008 J. Chem. Phys. 129 174114Google Scholar
[48] Chen W, Zhang H, Ding X L, Yu G T, Liu D, Huang X R 2014 J. Mater. Chem. C 2 7836Google Scholar
[49] Shen X P, Yu G T, Zhang Z S, Liu J W, Li H, Huang X R, Chen W 2017 J. Mater. Chem. C 5 2022Google Scholar
[50] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar
[51] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar
[52] Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J. Mater. Chem. C 2 6648Google Scholar
[53] Fan Z Q, Xie F, Jiang X W, Wei Z M, Li S S 2016 Carbon 110 200Google Scholar
计量
- 文章访问数: 4074
- PDF下载量: 83
- 被引次数: 0