搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流

李佳锦 刘乾 伍丹 邓小清 张振华 范志强

引用本文:
Citation:

蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流

李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强

Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules

Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang
PDF
HTML
导出引用
  • 利用非平衡格林函数结合密度泛函理论, 研究了顺式蒽二噻吩和反式蒽二噻吩分子连接锯齿边碳化硅纳米带的自旋输运特性, 并在铁磁场下观察到自旋向上和自旋向下具有同方向的自旋整流特性. 在铁磁场下, 边缘碳原子或者硅原子双氢原子钝化可以改变锯齿边碳化硅纳米带的本征金属性, 使其转变为半导体. 顺式蒽二噻吩器件和反式蒽二噻吩器件的自旋向上电流-电压特性可以呈现显著的自旋整流效应, 相应的最大自旋整流比分别接近1011和1010. 此外, 由于自旋向上和自旋向下电流值之间的巨大差异, 两个器件的电流-电压特性都在正偏压区域呈现出完美的自旋过滤行为. 以上发现对未来设计自旋功能分子器件具有重要意义.
    Using non-equilibrium Green's function combined with density functional theory, we investigate the spin-resolved transport properties of the zigzag SiC nanoribbon (zSiCNR) connecting anthradithiophene (ADT) molecules and obtain the giant spin current rectification in the presence of a ferromagnetic field. The dual-hydrogenation on edge C atoms or Si atoms can change the initial metallicity of the pristine zSiCNR with the edge mono-hydrogenation into semiconductivity in the presence of a ferromagnetic field. The up-spin current-voltage characteristic of the cis-ADT device and the trans-ADT device can present the significant rectification, and the corresponding giant spin current rectification ratios are close to 1011 and 1010 respectively. In addition, the current-voltage characteristics of two devices both perform a perfect spin filtering behavior in the positive bias region due to the huge difference between the up-spin current value and the down-spin current value. These findings are of great significance in the functional applications of spin-resolved molecular devices in the future.
      通信作者: 范志强, zqfan@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074046, 61771076)、湖南省自然科学基金(批准号: 2020JJ4597, 2021JJ30733, 2021JJ40558)和湖南省研究生科研创新项目(批准号: CX20210827) 资助的课题.
      Corresponding author: Fan Zhi-Qiang, zqfan@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074046, 61771076), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2020JJ4597, 2021JJ30733, 2021JJ40558), and the Postgraduate Scientific Research Innovation Program of Hunan Province, China (Grant No. CX20210827).
    [1]

    Service R 2009 Science 323 1000Google Scholar

    [2]

    Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223Google Scholar

    [3]

    Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S, Wang L W 2020 Sci. China-Phys. , Mech. Astron. 63 277312Google Scholar

    [4]

    郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303Google Scholar

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar

    [5]

    Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [6]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [7]

    Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar

    [8]

    Chen X K, Hu X Y, Jia P J, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [9]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [10]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 物理学报 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [11]

    Kuang G, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570Google Scholar

    [12]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [13]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [14]

    Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar

    [15]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar

    [16]

    Feringa B L 2020 Adv. Mater. 32 1906416Google Scholar

    [17]

    Xin N, Li X X, Jia C C, Gong Y, Li M L, Wang S P, Zhang G Y, Yang J L 2018 Angew. Chem. Int. Ed. 57 14026Google Scholar

    [18]

    Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar

    [19]

    ChenQ, LiLL, PeetersFM 2018 Phys. Rev. B 97 085437Google Scholar

    [20]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [21]

    Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar

    [22]

    Ning F, Chen S Z, Zhang Y, Liao G H, Tang P Y, Li Z L, Tang L M 2019 Appl. Surf. Sci. 496 143629Google Scholar

    [23]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [24]

    Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar

    [25]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [26]

    Magda G Z, Jin X, Hagy I, Vancsó P, Osváth Z, Nemes P, Hwang C, Biró L, Tapasztó L 2014 Nature 514 608Google Scholar

    [27]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X, Zhang H L 2016 Org. Electron. 37 245Google Scholar

    [28]

    Liu Q, Cui X Q, Fan Z Q 2020 Phys. Lett. A 384 126732Google Scholar

    [29]

    Zhou X Y, Liu Y M, Zhou M, Shao H H, Zhou G H 2014 Appl. Phys. Express 7 021201Google Scholar

    [30]

    Yan X F, Chen Q, Li L L, Guo H Z, Peng J Z, Peeters F M 2020 Nano Energy 75 104953Google Scholar

    [31]

    Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar

    [32]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [33]

    Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar

    [34]

    崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷 婷, 刘洋 2018 物理学报 67 118501Google Scholar

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar

    [35]

    Peng X F, Chen K Q, Wang X J, Tan S H 2016 Carbon 100 36Google Scholar

    [36]

    Liao W H, Zhao H P, Ouyang G, Chen K Q, Zhou G H 2012 Appl. Phys. Lett. 100 153112Google Scholar

    [37]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [38]

    崔兴倩, 刘乾, 范志强, 张振华 2020 物理学报 69 248501Google Scholar

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Acta Phys. Sin. 69 248501Google Scholar

    [39]

    Li J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Carbon 93 335Google Scholar

    [40]

    Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar

    [41]

    Mamada M, Katagiri H, Mizukami M, Honda K, Minamiki T, Teraoka R, Uemura T, Tokito S 2013 ACS Appl. Mater. Interfaces 5 9670Google Scholar

    [42]

    Wang W C, Yeh T T, Liau W L, Chen J T, Hsu C S 2018 Org. Electron. 57 82Google Scholar

    [43]

    Su G R, Yang S, Li S, Butch C J, Filimonov S N, Ren J C, Liu W 2019 J. Am. Chem. Soc. 141 1628Google Scholar

    [44]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. :Condens. Matter 32 015901Google Scholar

    [45]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [46]

    Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar

    [47]

    Sun L, Li Y F, Li Z Y, Li Q X, Zhou Z, Chen Z F, Yang J L, Hou J G 2008 J. Chem. Phys. 129 174114Google Scholar

    [48]

    Chen W, Zhang H, Ding X L, Yu G T, Liu D, Huang X R 2014 J. Mater. Chem. C 2 7836Google Scholar

    [49]

    Shen X P, Yu G T, Zhang Z S, Liu J W, Li H, Huang X R, Chen W 2017 J. Mater. Chem. C 5 2022Google Scholar

    [50]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [51]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [52]

    Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J. Mater. Chem. C 2 6648Google Scholar

    [53]

    Fan Z Q, Xie F, Jiang X W, Wei Z M, Li S S 2016 Carbon 110 200Google Scholar

  • 图 1  两种器件的几何结构示意图. 左、右黑色实心线框分别是左、右电极, 为不同边缘双氢原子钝化锯齿边碳化硅纳米带的两个晶胞; 自旋向上和自旋向下状态的自旋极化电荷密度差的等值图, 等值均设置为0.05|e| Å–3 (1 Å = 0.1 nm)

    Fig. 1.  Schematic geometric structures of two devices. The left and right black solid wire frames are the left and the right electrode, which are two unit cells of zigzag SiCnanoribbon under different edge dual-hydrogenation. Isosurface plots of the spin-polarized charge density difference of up-spin and down-spin states with the isovalues all setting at 0.05|e| Å–3 (1 Å = 0.1 nm).

    图 2  (a)底部边缘硅原子双氢原子钝化的锯齿边碳化硅纳米和(b)顶部边缘碳原子双氢原子钝化的锯齿边碳化硅纳米的几何结构与自旋能带结构

    Fig. 2.  Geometric structures and spin-resolved band structures of (a) the zigzag SiC nanoribbon with the dual-hydrogenation on the silicon atom of the bottom edge and (b) the zigzag SiC nanoribbon with the dual-hydrogenation on the carbon atom of the top edge

    图 3  零偏压下的自旋输运谱和输运峰值处的自旋向上(红色)和自旋向下(蓝色)局域态密度空间分布 (a) M1; (b) M2

    Fig. 3.  The spin-resolved transmission spectra and the spatial distributions of the up-spin (red) and down-spin (blue)local density of state at the transmission peaks under zero bias: (a)M1; (b)M2 .

    图 4  (a) 零偏压下左、右电极和中央蒽二噻吩的自旋向上投影态密度; (b) 零偏压下左、右电极和中心蒽二噻吩的自旋向下投影态密度.

    Fig. 4.  (a) The up-spinprojecteddensity of states of left electrode, right electrode and central anthradithiophene at zero bias voltage; (b) the down-spinprojecteddensity of states of left electrode, right electrode and central anthradithiophene at zero bias voltage.

    图 5  器件M1的(a)线性和(b)对数自旋电流电压特性; 器件M2的(c)线性和(d)对数自旋电流电压特性

    Fig. 5.  Spin-resolved current-voltage characteristic of M1 in (a) linear and (b) logarithmic forms; current-voltage characteristic of M2 in (c) linear and (d) logarithmic forms.

    图 6  (a) M1和(b) M2的自旋向上和自旋向下电流整流比; (c) M1和(d) M2的自旋过滤效率

    Fig. 6.  The up-spin and down-spin current rectification ratios of (a) M1 and (b) M2; the spin filtering efficienciesof (c) M1 and (d) M2

    图 7  M1在不同电压下的(a)自旋向上和(b)自旋向下对数输运谱

    Fig. 7.  The up-spin (a) and down-spin (b) logarithmic transmission spectra of M1 under the different bias voltages.

  • [1]

    Service R 2009 Science 323 1000Google Scholar

    [2]

    Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223Google Scholar

    [3]

    Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S, Wang L W 2020 Sci. China-Phys. , Mech. Astron. 63 277312Google Scholar

    [4]

    郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303Google Scholar

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar

    [5]

    Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [6]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [7]

    Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar

    [8]

    Chen X K, Hu X Y, Jia P J, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [9]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [10]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 物理学报 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [11]

    Kuang G, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570Google Scholar

    [12]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [13]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [14]

    Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar

    [15]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar

    [16]

    Feringa B L 2020 Adv. Mater. 32 1906416Google Scholar

    [17]

    Xin N, Li X X, Jia C C, Gong Y, Li M L, Wang S P, Zhang G Y, Yang J L 2018 Angew. Chem. Int. Ed. 57 14026Google Scholar

    [18]

    Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar

    [19]

    ChenQ, LiLL, PeetersFM 2018 Phys. Rev. B 97 085437Google Scholar

    [20]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [21]

    Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar

    [22]

    Ning F, Chen S Z, Zhang Y, Liao G H, Tang P Y, Li Z L, Tang L M 2019 Appl. Surf. Sci. 496 143629Google Scholar

    [23]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [24]

    Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar

    [25]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [26]

    Magda G Z, Jin X, Hagy I, Vancsó P, Osváth Z, Nemes P, Hwang C, Biró L, Tapasztó L 2014 Nature 514 608Google Scholar

    [27]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X, Zhang H L 2016 Org. Electron. 37 245Google Scholar

    [28]

    Liu Q, Cui X Q, Fan Z Q 2020 Phys. Lett. A 384 126732Google Scholar

    [29]

    Zhou X Y, Liu Y M, Zhou M, Shao H H, Zhou G H 2014 Appl. Phys. Express 7 021201Google Scholar

    [30]

    Yan X F, Chen Q, Li L L, Guo H Z, Peng J Z, Peeters F M 2020 Nano Energy 75 104953Google Scholar

    [31]

    Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar

    [32]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [33]

    Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar

    [34]

    崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷 婷, 刘洋 2018 物理学报 67 118501Google Scholar

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar

    [35]

    Peng X F, Chen K Q, Wang X J, Tan S H 2016 Carbon 100 36Google Scholar

    [36]

    Liao W H, Zhao H P, Ouyang G, Chen K Q, Zhou G H 2012 Appl. Phys. Lett. 100 153112Google Scholar

    [37]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [38]

    崔兴倩, 刘乾, 范志强, 张振华 2020 物理学报 69 248501Google Scholar

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Acta Phys. Sin. 69 248501Google Scholar

    [39]

    Li J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Carbon 93 335Google Scholar

    [40]

    Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar

    [41]

    Mamada M, Katagiri H, Mizukami M, Honda K, Minamiki T, Teraoka R, Uemura T, Tokito S 2013 ACS Appl. Mater. Interfaces 5 9670Google Scholar

    [42]

    Wang W C, Yeh T T, Liau W L, Chen J T, Hsu C S 2018 Org. Electron. 57 82Google Scholar

    [43]

    Su G R, Yang S, Li S, Butch C J, Filimonov S N, Ren J C, Liu W 2019 J. Am. Chem. Soc. 141 1628Google Scholar

    [44]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. :Condens. Matter 32 015901Google Scholar

    [45]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [46]

    Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar

    [47]

    Sun L, Li Y F, Li Z Y, Li Q X, Zhou Z, Chen Z F, Yang J L, Hou J G 2008 J. Chem. Phys. 129 174114Google Scholar

    [48]

    Chen W, Zhang H, Ding X L, Yu G T, Liu D, Huang X R 2014 J. Mater. Chem. C 2 7836Google Scholar

    [49]

    Shen X P, Yu G T, Zhang Z S, Liu J W, Li H, Huang X R, Chen W 2017 J. Mater. Chem. C 5 2022Google Scholar

    [50]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [51]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [52]

    Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J. Mater. Chem. C 2 6648Google Scholar

    [53]

    Fan Z Q, Xie F, Jiang X W, Wei Z M, Li S S 2016 Carbon 110 200Google Scholar

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究. 物理学报, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [4] 田颖异, 王拴虎, 罗殿柄, 魏向洋, 金克新. 溶液旋涂法制备BixY3–xFe5O12薄膜的自旋输运特性. 物理学报, 2023, 72(1): 017201. doi: 10.7498/aps.72.20221183
    [5] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 物理学报, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [6] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响. 物理学报, 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [7] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [8] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [9] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [10] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [11] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [12] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [13] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运. 物理学报, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [14] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [15] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响. 物理学报, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [16] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用. 物理学报, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [17] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性. 物理学报, 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [18] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究. 物理学报, 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
    [19] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  4074
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28
  • 修回日期:  2021-12-08
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回