搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体薄层中环链状空化泡云结构稳定性分析

李凡 张先梅 田华 胡静 陈时 王成会 郭建中 莫润阳

引用本文:
Citation:

液体薄层中环链状空化泡云结构稳定性分析

李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳

Structure stability of cyclic chain-like cavitation cloud in thin liquid layer

Li Fan, Zhang Xian-Mei, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang
PDF
HTML
导出引用
  • 为分析超声空化的薄层液体中稳定的环状气泡链结构, 本文考虑气泡间次级声辐射影响, 得到了表征气泡间相互作用的气泡基本动力学方程以及次Bjerknes力的表达式, 数值分析了气泡平衡半径、声波频率和声压对纯液体区可能出现的单气泡所受的次Bjerknes力, 发现环形泡链能够吸引液体区内的新生的半径小于2 μm的气泡, 这可能是一定条件下环形气泡链能够稳定存在的原因. 随着驱动声波压力增加, 气泡数密度增加, 气泡间的耦合作用增强, 液体区内的环形泡链结构可能被液体区内出现的大气泡或者气泡团破坏, 进而导致环形结构演变成柱状、雾状乃至整个液体区均充满空化泡的情况发生. 通过高速摄影机观察了强声场作用下换能器辐射面外侧液体薄层内空化初生至形成空化云团簇的整个过程, 在空化云团簇中发现了局部同步崩溃并形成类纯液体薄层的现象, 该液体薄层边界随时间振荡持续约4个声周期后被空化云团簇吞没, 局部类纯液体区出现的位置具有随机性. 实验观察结果和理论预测具有很好的一致性.
    In this paper, the evolution of the cavitation bubbles is investigated. A model is developed to describe the cyclic chain-like cavitation cloud and analyze its structure stability in a thin liquid layer. By considering the effect of secondary acoustic radiation of bubbles, the dynamic equations of the bubbles in three zones of the cyclic chain are obtained. The secondary Bjerknes force is selected and used to explore the interaction between the bubbles in different regions. Numerical results show that the newborn bubbles inside the pure liquid zone of the thin layer can be attracted by the bubbles at the cyclic chain-like bubble chain. The bubble number density can affect the coupling strength between bubbles, and it is closely related to the driving pressure. Therefore, the structure stability of cyclic chain-like cavitation cloud can be disrupted by the perturbations of the acoustic pressure. To verify our analysis, we observe the structure of cavitation cloud in a thin liquid layer in a strong acoustic field by using a high speed camera. It is observed that the simultaneous collapse of local bubbles occurs, and pure liquid-like thin layers are distributed in the bubble cloud randomly. The boundary of the pure liquid-like thin layers oscillates with the acoustic field, and these liquid zones sustain about 4 acoustic cycles. The experimental results accord well with theoretical results.
      通信作者: 王成会, wangld001@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974232, 11727813)资助的课题
      Corresponding author: Wang Cheng-Hui, wangld001@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232, 11727813).
    [1]

    应崇福 2007 中国科学: 物理学 力学 天文学 37 129

    Ying C F 2007 Sci. Sin. Phys. Mech. Astron. 37 129

    [2]

    程效锐, 张舒研, 房宁 2018 应用化工 47 1753Google Scholar

    Cheng X R, Zhang S Y, Fang N 2018 Appl. Chem. Ind. 47 1753Google Scholar

    [3]

    朱新建, 朱雪茹, 吴若愚, 吴宝明 2017 北京生物医学工程 36 106Google Scholar

    Zhu X J, Zhu X R, Wu R Y, Wu B M 2017 Beijing Biomed. Eng. 36 106Google Scholar

    [4]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第236页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p236 (in Chinese)

    [5]

    Bai L X, Xu W L, Zhang Y C, Li Y F, Huang D F 2008 IEEE Ultrasonics Symposium Beijing, China, November 2–5, 2008 p942

    [6]

    Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W 1999 Philos. Trans. R. Soc. A 357 313Google Scholar

    [7]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [8]

    Zhang W J, An Y 2013 Phys. Rev. E 87 053023Google Scholar

    [9]

    王成会, 莫润阳, 胡静 2016 物理学报 65 149

    Wang C H, Mo R Y, Hu J 2016 Acta Phys. Sin. 65 149

    [10]

    王成会 2007 陕西师范大学学报 (自然科学版) 35 45

    Wang C H 2007 J. Shaanxi Norm. Univ. (Nat. Sci. Ed. ) 35 45

    [11]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [12]

    Wu P F, Bai L X, Lin W J, Yan J C 2017 Ultrason. Sonochem. 38 75Google Scholar

    [13]

    Moussatov A, Granger C, Dubus B 2005 Ultrason. Sonochem. 12 415Google Scholar

    [14]

    Gallego-juarez J A, Riera E, Acosta V, Rodriguez G, Blanco A 2010 Ultrason. Sonochem. 17 234Google Scholar

    [15]

    Soyama H, Saito K, Saka M 2002 J. Eng. Mater. Technol. 124 135Google Scholar

    [16]

    Soyama H, Park J D, Saka M 2000 J. Manuf. Sci. Eng. 122 83Google Scholar

    [17]

    Gao Y B, Wu B X, Liu Z, Zhou Y, Shen N G, Ding H T 2014 J. Manuf. Sci. Eng. 136 014502Google Scholar

    [18]

    Bai L X, Chen X G, Zhu G, Xu W L, Lin W J, Wu P F, Li C, Xu D L, Yan J C 2017 Ultrason. Sonochem. 35 405Google Scholar

    [19]

    Keller J B, Kolodner I I 1956 J. Appl. Phys. 27 1152Google Scholar

    [20]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [21]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [22]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304Google Scholar

    [23]

    Weninger K R, Camara C G, Putterman S J 2000 Phys. Rev. E 63 016310Google Scholar

    [24]

    白立新, 吴鹏飞, 李超, 邓京军, 曾志杰 2018 应用声学 37 614Google Scholar

    Bai L X, Wu P F, Li C, Deng J J, Zeng Z J 2018 Appl. Acoust. 37 614Google Scholar

    [25]

    Vanhille C, Campos-Pozuelo C 2012 Ultrason. Sonochem. 19 217Google Scholar

  • 图 1  薄层气泡群分区

    Fig. 1.  Regional division of thin-layer bubble groups.

    图 2  声波频率$ f{\text{ = 2}}0{\text{ kHz}} $, 液体区域内单气泡所受的次Bjerknes力随气泡半径的变化 (a) Pa = 100 kPa; (b) Pa = 120 kPa; (c) Pa = 140 kPa

    Fig. 2.  Secondary Bjerknes force of a single bubble in the liquid area varies with the bubble radius, $ f{\text{ = 2}}0{\text{ kHz}} $: (a) Pa = 100 kPa; (b) Pa = 120 kPa; (c) Pa = 140 kPa.

    图 3  驱动声压$ {P_{\text{a}}} = 100{\text{ kPa}} $, 驱动声波频率对单气泡所受的次Bjerknes力的影响 (a)$ f{\text{ = 4}}0{\text{ kHz}} $; (b)$ f = 80{\text{ kHz}} $

    Fig. 3.  Driving amplitude$ {P_{\text{a}}} = 100{\text{ kPa}}, $ influence of driving acoustic frequency on the secondary Bjerknes force applied to a single bubble: (a)$ f{\text{ = 4}}0{\text{ kHz}} $; (b)$ f = 80{\text{ kHz}} $.

    图 4  不同气泡半径时, 气泡数密度对气泡链半径随声压演变规律的影响, 声波频率$ f{\text{ = }}20{\text{kHz}} $ (a) ${R_{10}} = {R_{20}} = 3\;{{ \mu {\rm{m}}}}$, (b) ${R_{10}} = 5\;{{ \mu {\rm{m}}}},\; {R_{20}} = 3\;{{ \mu {\rm{m}}}}$, (c) ${R_{10}} = 3\;{{ \mu {\rm{m}}, }}\;{R_{20}} = 5\;{{ \mu {\rm{m}}}}$

    Fig. 4.  Effect of bubble number density on the evolution of bubble chain radius with acoustic pressure for different bubble radius, $f{\text{ = }}20\;{\text{kHz}}$: (a)${R_{10}} = {R_{20}} = 3\;{{ \mu {\rm{m}}}}$, (b)${R_{10}} = 5\;{{ \mu {\rm{m}}}},\; {R_{20}} = 3\;{{ \mu {\rm{m}}}}$, (c)${R_{10}} = 3\;{{ \mu {\rm{m}}, }}\;{R_{20}} = 5\;{{ \mu {\rm{m}}}}$.

    图 5  实验装置示意图

    Fig. 5.  Schematic diagram of experimental setup.

    图 6  薄层液体中的空化结构

    Fig. 6.  Cavitation structure in a thin layer of liquid.

    图 7  薄层液体中的空化结构随时间的变化

    Fig. 7.  Variation of cavitation structure in thin layer liquid with time.

    图 8  气泡云吸引周围气泡团

    Fig. 8.  Bubble cloud attracting the surrounding bubble cluster.

  • [1]

    应崇福 2007 中国科学: 物理学 力学 天文学 37 129

    Ying C F 2007 Sci. Sin. Phys. Mech. Astron. 37 129

    [2]

    程效锐, 张舒研, 房宁 2018 应用化工 47 1753Google Scholar

    Cheng X R, Zhang S Y, Fang N 2018 Appl. Chem. Ind. 47 1753Google Scholar

    [3]

    朱新建, 朱雪茹, 吴若愚, 吴宝明 2017 北京生物医学工程 36 106Google Scholar

    Zhu X J, Zhu X R, Wu R Y, Wu B M 2017 Beijing Biomed. Eng. 36 106Google Scholar

    [4]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第236页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p236 (in Chinese)

    [5]

    Bai L X, Xu W L, Zhang Y C, Li Y F, Huang D F 2008 IEEE Ultrasonics Symposium Beijing, China, November 2–5, 2008 p942

    [6]

    Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W 1999 Philos. Trans. R. Soc. A 357 313Google Scholar

    [7]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [8]

    Zhang W J, An Y 2013 Phys. Rev. E 87 053023Google Scholar

    [9]

    王成会, 莫润阳, 胡静 2016 物理学报 65 149

    Wang C H, Mo R Y, Hu J 2016 Acta Phys. Sin. 65 149

    [10]

    王成会 2007 陕西师范大学学报 (自然科学版) 35 45

    Wang C H 2007 J. Shaanxi Norm. Univ. (Nat. Sci. Ed. ) 35 45

    [11]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [12]

    Wu P F, Bai L X, Lin W J, Yan J C 2017 Ultrason. Sonochem. 38 75Google Scholar

    [13]

    Moussatov A, Granger C, Dubus B 2005 Ultrason. Sonochem. 12 415Google Scholar

    [14]

    Gallego-juarez J A, Riera E, Acosta V, Rodriguez G, Blanco A 2010 Ultrason. Sonochem. 17 234Google Scholar

    [15]

    Soyama H, Saito K, Saka M 2002 J. Eng. Mater. Technol. 124 135Google Scholar

    [16]

    Soyama H, Park J D, Saka M 2000 J. Manuf. Sci. Eng. 122 83Google Scholar

    [17]

    Gao Y B, Wu B X, Liu Z, Zhou Y, Shen N G, Ding H T 2014 J. Manuf. Sci. Eng. 136 014502Google Scholar

    [18]

    Bai L X, Chen X G, Zhu G, Xu W L, Lin W J, Wu P F, Li C, Xu D L, Yan J C 2017 Ultrason. Sonochem. 35 405Google Scholar

    [19]

    Keller J B, Kolodner I I 1956 J. Appl. Phys. 27 1152Google Scholar

    [20]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [21]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [22]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304Google Scholar

    [23]

    Weninger K R, Camara C G, Putterman S J 2000 Phys. Rev. E 63 016310Google Scholar

    [24]

    白立新, 吴鹏飞, 李超, 邓京军, 曾志杰 2018 应用声学 37 614Google Scholar

    Bai L X, Wu P F, Li C, Deng J J, Zeng Z J 2018 Appl. Acoust. 37 614Google Scholar

    [25]

    Vanhille C, Campos-Pozuelo C 2012 Ultrason. Sonochem. 19 217Google Scholar

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [3] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, 2023, 72(19): 194703. doi: 10.7498/aps.72.20230863
    [4] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [5] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [6] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [7] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究. 物理学报, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [8] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究. 物理学报, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [9] 马艳, 林书玉, 徐洁, 唐一璠. 非球形效应对强声场中次Bjerknes力的影响. 物理学报, 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [10] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [11] 王转玉, 康伟丽, 贾建峰, 武海顺. Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究. 物理学报, 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [12] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [13] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [14] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [15] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究. 物理学报, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [16] 沈壮志, 吴胜举. 声场中气泡群的动力学特性. 物理学报, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [17] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [18] 崔健, 罗积润, 朱敏, 郭炜. 休斯结构多间隙耦合腔的稳定性分析. 物理学报, 2011, 60(6): 061101. doi: 10.7498/aps.60.061101
    [19] 张阿漫, 姚熊亮, 李 佳. 气泡群的动态物理特性研究. 物理学报, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [20] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究. 物理学报, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
计量
  • 文章访问数:  4124
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2021-12-27
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回