-
过渡金属硫化物单层具有直接带隙, 可产生较强的光致发光, 这一特殊的性质使其在光电器件、光电探测等领域具有广泛的应用前景. 由于只有原子级别的厚度以及存在激子的非辐射复合, 其光致发光效率仍有待提高. 本文设计了一种金膜-二氧化钛光栅-过渡金属硫化物单层组合结构, 可大幅提升过渡金属硫化物单层光致发光效率. 利用Purcell效应对自发辐射速率进行控制, 得到峰值为3.4倍的发光增强. 研究了单层二硫化钨以及单层二硒化钨在设计结构上的光致发光信号, 通过实验证实了过渡金属硫化物单层与亚波长光栅耦合结构中光致发光增强的可行性, 为二维材料在光电器件中的应用提供了一个新思路.Transition metal dichalcogenide (TMDC) monolayers have direct band gaps and can produce strong photoluminescence(PL), thereby possessing a wide application prospect in photoelectric devices and photoelectric detection fields. However, their PL efficiency needs further improving because they are of atomic thickness only, besides, they have non-radiative recombination of excitons. In this study, a combination structure of a gold film, titanium dioxide subwavelength gratings and TMDC monolayers is designed, which can greatly improve PL efficiency of the TMDC monolayers. The spontaneous emission rate can be controlled by the Purcell effect, and the maximum enhancement of photoluminescence is as high as 3.4 times. In this paper, the PL signals of monolayer WS2 and monolayer WSe2 on the designed structure are studied. The feasibility of the enhancement of PL of the TMDC monolayers on the subwavelength grating structure is verified experimentally, which provides a new idea for the application of two-dimensional materials to optoelectronic devices.
-
Keywords:
- transition metal dichalcogenides /
- subwavelength grating /
- photoluminescence /
- Purcell effect
[1] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[2] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74Google Scholar
[3] Li H, Wu J, Yin Z Y, Zhang H 2014 Acc. Chem. Res. 47 1067Google Scholar
[4] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar
[5] He K L, Kumar N, Zhao L, Wang Z F, Mak K F, Zhao H, Shan J 2014 Phys. Rev. Lett. 113 026803Google Scholar
[6] Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G, Fal’ko V I 2013 Phys. Rev. B 88 045416Google Scholar
[7] Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725Google Scholar
[8] Morpurgo A F 2013 Nat. Phys. 9 532Google Scholar
[9] Jones A M, Yu H Y, Ghimire N J, Wu S F, Aivazian G, Ross J S, Zhao B, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Nanotechnol. 8 634Google Scholar
[10] Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X D, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar
[11] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[12] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[13] Wang Z F, Jie S, Mak K F 2016 Nat. Nanotechnol. 12 144Google Scholar
[14] Schaibley J R, Rivera P, Yu H Y, Seyler K L, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Xu X D 2016 Nat. Commun. 7 13747Google Scholar
[15] Xu Z Q, Zhang Y P, Wang Z Y, Shen Y T, Huang W C, Xia X, Yu W Z, Xue Y S, Sun L T, Zheng C X, Lu Y R, Liao L, Bao Q L 2016 2 D Mater. 3 041001Google Scholar
[16] Li P, Yuan K, Lin D Y, Xu X L, Wang Y L, Wan Y, Yu H R, Zhang K, Ye Y, Dai L 2017 Nanoscale 10 1039Google Scholar
[17] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Cobden D H, Xu X D 2014 Nat. Nanotechnol. 9 268Google Scholar
[18] Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar
[19] Piper J R, Fan S 2016 ACS Photonics 3 571Google Scholar
[20] Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar
[21] Galfsky T, Sun Z, Considine C R, Chou C T, Ko W C, Lee Y H, Narimanov E E, Menon V M 2016 Nano Lett. 16 4940Google Scholar
[22] Chen H T, Yang J, Rusak E, Straubel J, Guo R, Myint Y W, Pei J J, Decker M, Staude I, Rockstuhl C, Lu Y R, Kivshar Y S, Neshev D 2016 Sci. Rep. 6 22296Google Scholar
[23] Su M Y, Mirin R P 2006 Appl. Phys. Lett. 89 033105Google Scholar
[24] Tran T T, Wang D, Xu Z Q, Yang A, Toth M, Odom T W, Aharonovich I 2017 Nano Lett. 17 2634Google Scholar
[25] Sun S B, Dang J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C, Xu X L 2020 Chin. Phys. Lett. 37 087801Google Scholar
[26] Qian D D, Liu L, Xing Z X, Dong R, Wu L, Cai H K, Kong Y F, Zhang Y, Xu J J 2021 Chin. Phys. Lett. 38 087801Google Scholar
[27] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar
[28] Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A V D, Trusheim M E, Hatami F, Heinz T F, Hone J, Englund D 2013 Appl. Phys. Lett. 103 699Google Scholar
[29] Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961Google Scholar
[30] Goodman A J, Lien D H, Ahn G H, Spiegel L L, Amani M, Willard A P, Javey A, Tisdale W A 2020 J. Phys. Chem. C 124 12175Google Scholar
[31] Drüppel M, Deilmann T, Krüger P, Rohlfing M 2017 Nat. Commun. 8 2117Google Scholar
[32] Shan H Y, Yu Y, Zhang R, Cheng R T, Zhang D, Luo Y, Wang X L, Li B W, Zu S, Lin F, Liu Z, Chang K, Fang Z Y 2019 Mater. Today 24 10Google Scholar
[33] Qi P F, Luo Y, Li W, Cheng Y, Shan H Y, Wang X L, Liu Z, Ajayan P M, Lou J, Hou Y L, Liu K H, Fang Z Y 2020 ACS Nano 14 6897Google Scholar
[34] Li Q, Lu J, Gupta P, Qiu M 2019 Adv. Opt. Mater. 7 1900595Google Scholar
[35] Duong N M H, Xu Z Q, Kianinia M, Su R, Liu Z, Kim S, Bradac C, Tran T T, Wan Y, Li L J, Solntsev A, Liu J, Aharonovich I 2018 ACS Photonics 5 3950Google Scholar
-
图 2 (a) 光栅外和(b) 光栅上单层WS2在不同激发功率PL光谱; (c) 光栅外和光栅上单层WS2光致发光强度与泵浦功率的关系以及对应的PL强度比值; (d) 400 μW泵浦功率下光栅外和光栅上单层WS2 PL光谱
Fig. 2. (a) PL spectra of the WS2 monolayer (a) outside the grating and (b) on the grating at different excitation powers; (c) relationship between the WS2 photoluminescence intensity and the pump power and the fitting curve; (d) PL spectra of the WS2 monolayer at 400 μW pump power.
图 4 (a) 光栅外和(b) 光栅上的单层WS2在最大激发功率20%—100%下的时间分辨PL谱; (c) 光栅外和(d) 光栅上单层WS2在60%最大激发功率下的荧光寿命及拟合曲线
Fig. 4. Time-resolved PL spectra of the WS2 monolayer (a) outside the grating and (b) on the grating at 20%–100% of the maximum excitation power. Fluorescence lifetime and fitting curve of WS2 monolayer (c) outside the grating and (d) on the grating at 60% of the maximum excitation power.
-
[1] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[2] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74Google Scholar
[3] Li H, Wu J, Yin Z Y, Zhang H 2014 Acc. Chem. Res. 47 1067Google Scholar
[4] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar
[5] He K L, Kumar N, Zhao L, Wang Z F, Mak K F, Zhao H, Shan J 2014 Phys. Rev. Lett. 113 026803Google Scholar
[6] Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G, Fal’ko V I 2013 Phys. Rev. B 88 045416Google Scholar
[7] Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725Google Scholar
[8] Morpurgo A F 2013 Nat. Phys. 9 532Google Scholar
[9] Jones A M, Yu H Y, Ghimire N J, Wu S F, Aivazian G, Ross J S, Zhao B, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Nanotechnol. 8 634Google Scholar
[10] Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X D, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar
[11] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[12] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[13] Wang Z F, Jie S, Mak K F 2016 Nat. Nanotechnol. 12 144Google Scholar
[14] Schaibley J R, Rivera P, Yu H Y, Seyler K L, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Xu X D 2016 Nat. Commun. 7 13747Google Scholar
[15] Xu Z Q, Zhang Y P, Wang Z Y, Shen Y T, Huang W C, Xia X, Yu W Z, Xue Y S, Sun L T, Zheng C X, Lu Y R, Liao L, Bao Q L 2016 2 D Mater. 3 041001Google Scholar
[16] Li P, Yuan K, Lin D Y, Xu X L, Wang Y L, Wan Y, Yu H R, Zhang K, Ye Y, Dai L 2017 Nanoscale 10 1039Google Scholar
[17] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Cobden D H, Xu X D 2014 Nat. Nanotechnol. 9 268Google Scholar
[18] Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar
[19] Piper J R, Fan S 2016 ACS Photonics 3 571Google Scholar
[20] Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar
[21] Galfsky T, Sun Z, Considine C R, Chou C T, Ko W C, Lee Y H, Narimanov E E, Menon V M 2016 Nano Lett. 16 4940Google Scholar
[22] Chen H T, Yang J, Rusak E, Straubel J, Guo R, Myint Y W, Pei J J, Decker M, Staude I, Rockstuhl C, Lu Y R, Kivshar Y S, Neshev D 2016 Sci. Rep. 6 22296Google Scholar
[23] Su M Y, Mirin R P 2006 Appl. Phys. Lett. 89 033105Google Scholar
[24] Tran T T, Wang D, Xu Z Q, Yang A, Toth M, Odom T W, Aharonovich I 2017 Nano Lett. 17 2634Google Scholar
[25] Sun S B, Dang J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C, Xu X L 2020 Chin. Phys. Lett. 37 087801Google Scholar
[26] Qian D D, Liu L, Xing Z X, Dong R, Wu L, Cai H K, Kong Y F, Zhang Y, Xu J J 2021 Chin. Phys. Lett. 38 087801Google Scholar
[27] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar
[28] Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A V D, Trusheim M E, Hatami F, Heinz T F, Hone J, Englund D 2013 Appl. Phys. Lett. 103 699Google Scholar
[29] Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961Google Scholar
[30] Goodman A J, Lien D H, Ahn G H, Spiegel L L, Amani M, Willard A P, Javey A, Tisdale W A 2020 J. Phys. Chem. C 124 12175Google Scholar
[31] Drüppel M, Deilmann T, Krüger P, Rohlfing M 2017 Nat. Commun. 8 2117Google Scholar
[32] Shan H Y, Yu Y, Zhang R, Cheng R T, Zhang D, Luo Y, Wang X L, Li B W, Zu S, Lin F, Liu Z, Chang K, Fang Z Y 2019 Mater. Today 24 10Google Scholar
[33] Qi P F, Luo Y, Li W, Cheng Y, Shan H Y, Wang X L, Liu Z, Ajayan P M, Lou J, Hou Y L, Liu K H, Fang Z Y 2020 ACS Nano 14 6897Google Scholar
[34] Li Q, Lu J, Gupta P, Qiu M 2019 Adv. Opt. Mater. 7 1900595Google Scholar
[35] Duong N M H, Xu Z Q, Kianinia M, Su R, Liu Z, Kim S, Bradac C, Tran T T, Wan Y, Li L J, Solntsev A, Liu J, Aharonovich I 2018 ACS Photonics 5 3950Google Scholar
计量
- 文章访问数: 5359
- PDF下载量: 215
- 被引次数: 0