-
采用溶液法制备了铟锌锡氧化物(indium-zinc-tin-oxide, IZTO)有源层薄膜和铪铝氧化物(hafnium-aluminum oxide, HAO)绝缘层薄膜, 并成功应用于背沟道刻蚀结构(back-channel etched, BCE)IZTO薄膜晶体管(thin-film transistor, TFT)像素阵列. 利用N2O等离子体表面处理钝化IZTO缺陷态, 提升溶液法像素级IZTO TFT器件性能, 特别是光照负偏压稳定性. 结果表明, 经N2O等离子体处理后, 器件饱和迁移率提升了接近80%, 达到51.52 cm2·V–1·s–1. 特别是3600 s光照负偏压稳定性从–0.3 V提升到–0.1 V, 满足显示驱动的要求. 这进一步说明经N2O等离子体处理后能够得到良好的溶液法像素级IZTO TFT阵列.In this paper, we fabricate a back channel etched structure thin film transistor (TFT) pixel array with hafnium-aluminum oxide dielectric and indium-zinc-tin-oxide (IZTO) semiconductor using a solution process. The electrical characteristics of IZTO TFT are modified by N2O plasma treatment. In comparison with the subthreshold swing and saturation mobility of the device untreated by plasma , the subthreshold swing decreases from 204 to 137 mV·dec–1, and the saturation mobility increases from 29.12 to 51.52 cm2·V–1·s–1. Improvement in the mobility and the subthreshold swing (SS) demonstrate that interface states may be passivated by reactive O radicals that are generated by N2O plasma, which is confirmed by the result of X-ray photoelectron spectrum analysis. In addition, the stability of negative bias illumination stress (NBIS) shift is only 0.1V for 3600 s with an illumination intensity of 10000 lux. This result indicates that its superior stability meets the requirements for the display driver. Therefore, N2O plasma treatment is verified to be an effective method to improve device performance and light stability for IZTO TFT pixel array.
-
Keywords:
- solution process /
- TFT pixel array /
- N2O plasma /
- negative bias illumination stress
[1] Saito N, Ueda T, Tezuka T, Ikeda K 2018 IEEE J. Electron Devices Soc. 6 1253Google Scholar
[2] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar
[3] Kim J, Park J, Yoon G, Khushabu A, Kim J S, Pae S, Cho E C, Yi J 2020 Mater. Sci. Semicond. Process. 120 105264Google Scholar
[4] Karteri İ, Karataş Ş, Al-Ghamdi A A, Yakuphanoğlu F 2015 Synth. Met. 199 241Google Scholar
[5] Liu X Q, Wang J L, Liao C N, Xiao X H, Guo S S, Jiang C Z, Fan Z Y, Wang T, Chen X S, Lu W, Hu W D, Liao L 2014 Adv. Mater. 26 7399Google Scholar
[6] Liu L C, Chen J S, Jeng J S 2014 Appl. Phys. Lett. 105 023509Google Scholar
[7] Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J S, Jeong J K, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar
[8] Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J 2011 Appl. Phys. Lett. 99 253501Google Scholar
[9] Xu Y L, Li X F, Zhu L Y, Zhang J H 2016 Mater. Sci. Semicond. Process. 46 23Google Scholar
[10] Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C S, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar
[11] Yang J H, Choi J H, Cho S H, Pi J E, Kim H O, Hwang C S, Park K, Yoo S 2018 IEEE Electron Device Lett. 39 508Google Scholar
[12] Zhao M J, Zhang Z W, Xu Y C, Xu D S, Zhang J Y, Huang Z C 2020 Phys. Status Solidi A 217 1900773Google Scholar
[13] Li Z Y, Yang H Z, Chen S C, Lu Y B, Xin Y Q, Yang T L, Sun H 2018 J. Phys. D:Appl. Phys. 51 175101Google Scholar
[14] Cathleen A H, Gaillard J F, Kenneth R P 2010 J. Solid State Chem. 183 761Google Scholar
[15] Jeong J K, Jeong J H, Yang H W, Park J S, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 91 113505Google Scholar
[16] Chong E, Jo K C, Lee S Y 2010 Appl. Phys. Lett. 96 152102Google Scholar
[17] Ye Z Z, Yue S L, Zhang J, Li X F, Chen L X, Lu J G 2016 IEEE Trans. Electron Devices 63 3547Google Scholar
[18] Jhu J C, Chang T C, Chang G W, Tai Y H, Tsai W W, Chiang W J, Yan J Y 2013 J. Appl. Phys. 114 204501Google Scholar
[19] Lu R K, Lu J G, Wei X S, Yue S L, Li S Q, Lu B J, Zhao Y, Zhu L P, Chen L X, Ye Z Z 2020 Adv. Electron. Mater. 6 2000233Google Scholar
[20] Umeda K, Miyasako T, Sugiyama A, Tanaka A, Suzuki M, Tokumitsu E, Shimoda T 2013 J. Appl. Phys. 113 184509Google Scholar
[21] Hsieh T Y, Chang T C, Chen T C, Tsai M Y, Lu W H, Chen S C, Jian F Y, Lin C S 2011 Thin Solid Films 520 1427Google Scholar
[22] Pan C C, Yang S B, Chen L L, Shi J F, Sun X, Li X F, Zhang J H 2020 IEEE J. Electron Devices Soc. 8 524Google Scholar
[23] Xu W X, Hu L Y, Zhao C, Zhang L J, Zhu D L, Cao P J, Liu W J, Han S, Liu X K, Jia F, Zeng Y X, Lu Y M 2018 Appl. Surf. Sci. 455 554Google Scholar
[24] Mude N N, Bukke R N, Saha J K, Avis C, Jang J 2019 Adv. Electron. Mater. 5 1900768Google Scholar
[25] Zhang Q, Xia G D, Li L B, Xia W W, Gong H Y, Wang S M 2019 Curr. Appl. Phys. 19 174Google Scholar
[26] Hsu C C, Chou C H, Chen Y T, Jhang W C 2019 IEEE Trans. Electron Devices 66 2631Google Scholar
[27] Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895Google Scholar
[28] Ohara H, Sasaki T, Noda K, Ito S, Sasaki M, Endo Y, Yoshitomi S, Sakata J, Serikawa T, Yamazaki S 2010 Jpn. J. Appl. Phys. 49 03cd02Google Scholar
[29] Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K W, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar
[30] Bukke R N, Avis C, Jang J 2016 IEEE Electron Device Lett. 37 433Google Scholar
[31] Biswas P K, De A, Dua L K, Chkoda L 2006 Indian Acad. Sci. 29 323Google Scholar
[32] Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Jian F Y, Tsai M Y 2011 Thin Solid Films 520 1422Google Scholar
[33] Chowdhury H M D, Migliorato P, Jang J 2013 Appl. Phys. Lett. 102 143506Google Scholar
-
图 5 IZTO TFT的PBIS和NBIS稳定性 (a) 和(b) 为无处理, (c) 和(d) 为N2O等离子体处理; (e) 阈值电压随偏压时间的变化; (f) N2O等离子体处理后IZTO TFT的能带图示意图
Fig. 5. Stability for IZTO TFT: Stability of (a) untreated and (c) treated PBIS; stability of (b) untreated and (d) treated NBIS; (e) plots of voltage shift versus time; (f) band diagram of IZTO TFT with N2O plasma treatment.
图 7 阵列中各个位置器件负偏压光照稳定性分布 (a) 左上; (b)右上; (c) 中间; (d)左下; (e) 右下; (f) 阵列整体负偏压光照稳定性
Fig. 7. Illumination stability distribution of devices under negative bias in the array: (a) Top-left; (b) top-right; (c) middle; (d) bottom-left; (e) bottom-right; (f) the negative bias illumination stress stability of the array.
表 1 有无N2O等离子体处理的IZTO TFT性能对比
Table 1. Device performance comparison of IZTO TFT without and with N2O plasma treatment.
阈值
电压/
V迁移率/
(cm2·V–1·s–1)亚阈值摆幅/
(mV·dec–1)开关比 Untreated –0.5 29.12 204 1.1×107 Treated 0.1 51.52 137 2.3×107 -
[1] Saito N, Ueda T, Tezuka T, Ikeda K 2018 IEEE J. Electron Devices Soc. 6 1253Google Scholar
[2] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar
[3] Kim J, Park J, Yoon G, Khushabu A, Kim J S, Pae S, Cho E C, Yi J 2020 Mater. Sci. Semicond. Process. 120 105264Google Scholar
[4] Karteri İ, Karataş Ş, Al-Ghamdi A A, Yakuphanoğlu F 2015 Synth. Met. 199 241Google Scholar
[5] Liu X Q, Wang J L, Liao C N, Xiao X H, Guo S S, Jiang C Z, Fan Z Y, Wang T, Chen X S, Lu W, Hu W D, Liao L 2014 Adv. Mater. 26 7399Google Scholar
[6] Liu L C, Chen J S, Jeng J S 2014 Appl. Phys. Lett. 105 023509Google Scholar
[7] Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J S, Jeong J K, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar
[8] Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J 2011 Appl. Phys. Lett. 99 253501Google Scholar
[9] Xu Y L, Li X F, Zhu L Y, Zhang J H 2016 Mater. Sci. Semicond. Process. 46 23Google Scholar
[10] Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C S, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar
[11] Yang J H, Choi J H, Cho S H, Pi J E, Kim H O, Hwang C S, Park K, Yoo S 2018 IEEE Electron Device Lett. 39 508Google Scholar
[12] Zhao M J, Zhang Z W, Xu Y C, Xu D S, Zhang J Y, Huang Z C 2020 Phys. Status Solidi A 217 1900773Google Scholar
[13] Li Z Y, Yang H Z, Chen S C, Lu Y B, Xin Y Q, Yang T L, Sun H 2018 J. Phys. D:Appl. Phys. 51 175101Google Scholar
[14] Cathleen A H, Gaillard J F, Kenneth R P 2010 J. Solid State Chem. 183 761Google Scholar
[15] Jeong J K, Jeong J H, Yang H W, Park J S, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 91 113505Google Scholar
[16] Chong E, Jo K C, Lee S Y 2010 Appl. Phys. Lett. 96 152102Google Scholar
[17] Ye Z Z, Yue S L, Zhang J, Li X F, Chen L X, Lu J G 2016 IEEE Trans. Electron Devices 63 3547Google Scholar
[18] Jhu J C, Chang T C, Chang G W, Tai Y H, Tsai W W, Chiang W J, Yan J Y 2013 J. Appl. Phys. 114 204501Google Scholar
[19] Lu R K, Lu J G, Wei X S, Yue S L, Li S Q, Lu B J, Zhao Y, Zhu L P, Chen L X, Ye Z Z 2020 Adv. Electron. Mater. 6 2000233Google Scholar
[20] Umeda K, Miyasako T, Sugiyama A, Tanaka A, Suzuki M, Tokumitsu E, Shimoda T 2013 J. Appl. Phys. 113 184509Google Scholar
[21] Hsieh T Y, Chang T C, Chen T C, Tsai M Y, Lu W H, Chen S C, Jian F Y, Lin C S 2011 Thin Solid Films 520 1427Google Scholar
[22] Pan C C, Yang S B, Chen L L, Shi J F, Sun X, Li X F, Zhang J H 2020 IEEE J. Electron Devices Soc. 8 524Google Scholar
[23] Xu W X, Hu L Y, Zhao C, Zhang L J, Zhu D L, Cao P J, Liu W J, Han S, Liu X K, Jia F, Zeng Y X, Lu Y M 2018 Appl. Surf. Sci. 455 554Google Scholar
[24] Mude N N, Bukke R N, Saha J K, Avis C, Jang J 2019 Adv. Electron. Mater. 5 1900768Google Scholar
[25] Zhang Q, Xia G D, Li L B, Xia W W, Gong H Y, Wang S M 2019 Curr. Appl. Phys. 19 174Google Scholar
[26] Hsu C C, Chou C H, Chen Y T, Jhang W C 2019 IEEE Trans. Electron Devices 66 2631Google Scholar
[27] Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895Google Scholar
[28] Ohara H, Sasaki T, Noda K, Ito S, Sasaki M, Endo Y, Yoshitomi S, Sakata J, Serikawa T, Yamazaki S 2010 Jpn. J. Appl. Phys. 49 03cd02Google Scholar
[29] Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K W, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar
[30] Bukke R N, Avis C, Jang J 2016 IEEE Electron Device Lett. 37 433Google Scholar
[31] Biswas P K, De A, Dua L K, Chkoda L 2006 Indian Acad. Sci. 29 323Google Scholar
[32] Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Jian F Y, Tsai M Y 2011 Thin Solid Films 520 1422Google Scholar
[33] Chowdhury H M D, Migliorato P, Jang J 2013 Appl. Phys. Lett. 102 143506Google Scholar
计量
- 文章访问数: 4578
- PDF下载量: 86
- 被引次数: 0