搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响

李加红 孙贵花 张庆礼 王小飞 张德明 刘文鹏 高进云 郑丽丽 韩松 陈照 殷绍唐

引用本文:
Citation:

退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响

李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐

Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb:GdScO3 crystals

Li Jia-Hong, Sun Gui-Hua, Zhang Qing-Li, Wang Xiao-Fei, Zhang De-Ming, Liu Wen-Peng, Gao Jin-Yun, Zheng Li-Li, Han Song, Chen Zhao, Yin Shao-Tang
PDF
HTML
导出引用
  • 通过提拉法成功生长了GdScO3及Yb:GdScO3晶体, 分别对这两种晶体进行了空气气氛退火和氢气气氛退火, 并进行了X射线粉末衍射、激光拉曼光谱和透射光谱测试, 通过Rietveld精修给出了晶体的晶胞参数、原子坐标和温度因子等. 发现空气气氛退火使晶胞体积增大, 氢气气氛退火使晶胞体积减小, 说明氮气气氛中生长的晶体存在氧填隙缺陷, 空气气氛退火使晶体氧填隙缺陷增加, 氢气气氛退火减少了氧填隙缺陷. 退火气氛对GdScO3和Yb:GdScO3晶体的拉曼峰都不敏感, 掺Yb3+离子后使155 cm–1, 298 cm–1, 351 cm–1拉曼峰减弱或消失. 可见, 850 nm波段的GdScO3吸收损耗可能主要来自于氧填隙引起的缺陷能级吸收; Yb:GdScO3和GdScO3在1000—3000 nm波段的吸收损耗则由于空气或氢气气氛退火在导带或价带附近产生了陷阱能级所致. 这些结果为进一步优化和研究稀土掺杂GdScO3晶体的激光性能奠定了基础.
    GdScO3 and Yb:GdScO3 single crystals are grown by the chzochralski method in nitrogen atmosphere, and they are characterized by X-ray diffraction(XRD), Raman spectra and transmission spectra . Their lattice parameters, atomic coordinates and temperature factors are determined by Rietveld refinement. It is found that the cell volume of GdScO3 and Yb:GdScO3 annealed in air atmosphere increase, but after these sample are annealed in H2 atmosphere their cell volumes decrease. Based on these results, we demonstrate that the crystal grown in nitrogen atmosphere has interstitial oxygen atoms, and the number of interstitial oxygen atoms in the sample annealed in air atmosphere increases, but that annealed in H2 atmosphere decreases. The Raman peaks of 155 cm–1, 298 cm–1, 351 cm–1 of GdScO3 are weakened or even disappear when Yb3+ ions are doped into it. The Raman spectra of the Yb:GdScO3 unannealed and annealed in H2 and air atmosphere are nearly consistent with each other, which indicates that Raman spectrum is insensitive to the defects such as oxygen interstitial caused by annealing. It is suggested that the optical loss of GdScO3 in the visible wavelength originates mainly from the defect energy level absorption of oxygen interstitial, and transmissivity of Yb:GdScO3 increases when it is annealed in hydrogen atmosphere, which results from the fact that ytterbium ion can reduce some interstitial oxygen atoms. When GdScO3 and Yb:GdScO3 are annealed in air or hydrogen atmosphere, the optical absorption loss of GdScO3 and Yb:GdScO3 in a wavelength range of 1000–3000 nm increase due to the trap level produced near the conduction or valence band. The effect on structure and spectral properties of Yb:GdScO3 and GdScO3 are explored preliminarily, which is useful for further studying and optimizing laser performance of rare earth doped GdScO3 crystal.
      通信作者: 孙贵花, ghsun@aiofm.ac.cn ; 张庆礼, zql@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51502292, 51802307)和先进激光技术安徽省开发研究基金(批准号: NO.AHL 20220 ZR04)资助的课题.
      Corresponding author: Sun Gui-Hua, ghsun@aiofm.ac.cn ; Zhang Qing-Li, zql@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51502292, 51802307) and the Open Project of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. NO.AHL 20220 ZR04).
    [1]

    Chaix-Pluchery O, Kreisel J 2011 Phase Transitions 84 542Google Scholar

    [2]

    Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X, Wu L S 2020 Chin. Phys. B 29 66Google Scholar

    [3]

    Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D, Xia Z C 2019 J. Alloys Compd. 803 992Google Scholar

    [4]

    Rong S S, Faheem M B, Li Y B 2021 J. Electron. Sci. Technol. 19 119Google Scholar

    [5]

    Aamir M, Bibi I, Ata S, Jilani K, Majid F, Kamal S, Alwadai N, Raza M A S, Bashir M, Iqbal S, Aadil M, Iqbal M 2021 Ceram. Int. 47 16696Google Scholar

    [6]

    Lin S H, Lin Z Q, Chen C W 2021 Ceram. Int 47 16828Google Scholar

    [7]

    Rumyantsev S, Stillman W, Shur M, Heeg T, Schlom D G, Koveshnikov S, Kambhampati R, Tokranov V, Oktyabrsky S 2012 Int. J. High Speed Electron. Syst. 20 105Google Scholar

    [8]

    Mizzi C A, Koirala P, Marks L D 2018 Phys. Rev. Mater. 2 025001Google Scholar

    [9]

    Schäfer A, Besmehn A, Luysberg M, Winden A, Stoica T, Schnee M, Zander W, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2014 Semicond. Sci. Technol. 29 075005Google Scholar

    [10]

    Schäfer A, Rahmanizadeh K, Bihlmayer G, Luysberg M, Wendt F, Besmehn A, Fox A, Schnee M, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2015 J. Alloys Compd. 651 514Google Scholar

    [11]

    Uecker R, Velickov B, Klimm D, Bertram R, Bernhagen M, Rabe M, Albrecht M, Fornari R, Schlom D G 2008 J. Cryst. Growth 310 2649Google Scholar

    [12]

    Mansley Z R, Mizzi C A, Koirala P, Wen J, Marks L D 2020 Phys. Rev. Mater. 4 045003Google Scholar

    [13]

    Paull R J, Mansley Z R, Ly T, Marks L D, Poeppelmeier K R 2018 Inorg. Chem. 57 4104Google Scholar

    [14]

    Seidel S, Schmid A, Miersch C, Schubert J, Heitmann J 2021 Appl. Phys. Lett. 118 052902Google Scholar

    [15]

    Briones J, Guinto M C, Pelicano C M 2021 Mater. Lett. 298 130040Google Scholar

    [16]

    Liu Y 2021 IOP Conference Series:Earth and Environmental Science 781 022069Google Scholar

    [17]

    Hidde J, Guguschev C, Ganschow S, Klimm D 2018 J. Alloys Compd. 738 415Google Scholar

    [18]

    Wu Y D, Chen H, Hua J Y, Qin Y L, Ma X H, Wei Y Y, Zi Z F 2019 Ceram. Int. 45 13094Google Scholar

    [19]

    Peng F, Liu W, Zhang Q, Luo J, Sun D, Sun G, Zhang D, Wang X 2018 J. Lumin. 201 176Google Scholar

    [20]

    Li Q, Dong J, Wang Q, Xue Y, Tang H, Xu X, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [21]

    Li Q, Dong J, Wang Q, Zhao H, Xue Y, Tang H, Xu X, Xu J 2021 J. Lumin. 230 117681Google Scholar

    [22]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y, Wang Q, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [23]

    Wang D, Hou W, Li N, Xue Y, Wang Q, Xu X, Li D, Zhao H, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [24]

    Peng F, Liu W, Luo J, Sun D, Chen Y, Zhang H, Ding S, Zhang Q 2018 Crystengcomm 20 6291Google Scholar

    [25]

    Yamaji A, Kochurikhin V, Fujimoto Y, Futami Y, Yanagida T, Yokota Y, Kurosawa S, Yoshikawa A 2012 Phys. Status SolidiC 9 2267Google Scholar

    [26]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [27]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [28]

    Rietveld H 1967 Acta Crystallogr. 22 151Google Scholar

    [29]

    Rietveld H 1969 J. Appl. Crystallogr 2 65Google Scholar

    [30]

    张克从, 张乐潓 1997 晶体生长科学与技术(上) (北京: 科学出版社) 第472页

    Zhang K C, Zhang L H 1997 Crystal Growth Science and Technology (Vol. 1) (Beijing: Science Press) p472 (in Chinese)

    [31]

    Chopelas A 2011 Phys. Chem. Miner. 38 709Google Scholar

    [32]

    Grover V, Shukla R, Jain D, Deshpande S K, Arya A, Pillai C G S, Tyagi A K 2012 Chem. Mater. 24 2186Google Scholar

    [33]

    Chaix-Pluchery O, Kreisel J 2009 J. Phys. Condens. Matter 21 175901Google Scholar

    [34]

    Weber M C, Guennou M, Zhao H J, Íñiguez J, Vilarinho R, Almeida A, Moreira J A, Kreisel J 2016 Phys. Rev. B 94 214103Google Scholar

    [35]

    Iliev M N, Abrashev M V, Laverdière J, Jandl S, Gospodinov M M, Wang Y Q, Sun Y Y 2006 Phys. Rev. B 73 064302Google Scholar

    [36]

    Alsowayigh M M, Timco G A, Borilovic I, Alanazi A, Vitorica-Yrezabal I J, Whitehead G F S, McNaughter P D, Tuna F, O'Brien P, Winpenny R E P, Lewis D J, Collison D 2020 Inorg. Chem. 59 15796Google Scholar

    [37]

    Singh M K, Jang H M, Gupta H C, Katiyar R S 2008 J. Raman Spectrosc. 39 842Google Scholar

    [38]

    Ruffo A, Mozzati M C, Albini B, Galinetto P, Bini M 2020 J. Mater. Sci.: Mater. Electron. 31 18263Google Scholar

    [39]

    Nikl M, Nitsch K, Hybler J, Chval J, Reiche P 1996 Phys. Status Solidi B 196 7Google Scholar

    [40]

    李涛, 赵广军, 何晓明, 徐 军, 潘守夔 2002 人工晶体学报 31 456

    Li T, Zhao G J, He X M, Xu J, Pan S K 2002 J. Artif. Cryst. 31 456

  • 图 1  GdScO3晶体XRD数据Rietveld精修结果(cal, obs, bckgr和diff表示计算值、实验值、背底以及实验值和计算值之间的误差)

    Fig. 1.  Rietveld refinement results of the GdScO3 crystal obtained from the XRD data. (cal, obs, bckgr, and diff mean calculated data, observed data, background, and the difference between observed data and calculated data).

    图 2  不同气氛退火GdScO3晶体XRD精修结果与GdScO3标准卡片(ICSD#65513) (a) Yb:GdScO3未退火; (b) Yb:GdScO3空气气氛退火; (c) Yb:GdScO3 H2气氛退火; (d) GdScO3空气气氛退火; (e) GdScO3 H2气氛退火; (f) GdScO3(ICSD#65513)

    Fig. 2.  Rietveld refinement results of the GdScO3 crystal obtained from the XRD data annealed in different atmospheres and (ICSD#65513): (a) Yb:GdScO3 unannealed; (b) Yb:GdScO3 annealed in air atmosphere; (c) Yb:GdScO3 annealed in H2; (d) GdScO3 annealed in air atmosphere; (e) GdScO3 annealed in H2; (f) GdScO3(ICSD#65513).

    图 3  不同退火气氛下Yb:GdScO3和GdScO3晶体的拉曼光谱 (a) Yb:GdScO3 未退火; (b) Yb:GdScO3 空气气氛退火; (c) Yb:GdScO3 H2气氛退火; (d) GdScO3 空气气氛退火; (e) GdScO3 H2气氛退火

    Fig. 3.  Raman spectra of Yb:GdScO3 and GdScO3 crystals annealed in different atmospheres: (a) Yb:GdScO3 unannealed; ( b) Yb:GdScO3 annealed in air atmosphere; (c) Yb:GdScO3 annealed in H2; (d) GdScO3 annealed in air atmosphere; (e) GdScO3 annealed in H2.

    图 4  不同退火气氛条件下GdScO3晶体在250—3000 nm范围内的透射光谱 (a) GdScO3 H2气氛退火(样品厚度d = 1.60 mm); (b) GdScO3 未退火(样品厚度d = 1.63 mm); (c) GdScO3 空气气氛退火(样品厚度d=1.62 mm)

    Fig. 4.  Transmittance spectra of the GdScO3 crystal before and after annealed in the range of 250–3000 nm: (a) GdScO3 annealed in H2; (b) GdScO3 unannealed; (c) GdScO3 annealedin air atmosphere.

    图 5  不同气氛条件下Yb:GdScO3晶体在250—3000 nm范围内的透射光谱 (a) Yb:GdScO3 H2气氛退火(样品厚度d = 1.65 mm); (b) Yb:GdScO3 未退火(样品厚度d = 1.60 mm); (c) Yb:GdScO3 空气气氛退火(样品厚度d = 1.66 mm)

    Fig. 5.  Transmittance spectra of the Yb:GdScO3 crystal before and after annealed in the range of 250—3000 nm: (a) Yb:GdScO3 annealed in H2; (b) Yb:GdScO3 unannealed; (c) Yb:GdScO3 annealed in air atmosphere.

    表 1  GdScO3晶体XRD数据精修结构参数

    Table 1.  Refined structural parameters of GdScO3 crystal obtained from XRD data.

    AtomMultiplicity
    Wyckoff letter
    xyzOccupancyUisoR factor
    RpRwp
    GdScO3 annealed in H2
    O14c0.4510780.2500000.1123751.01440.01800
    Sc14b0.0000000.0000000.5000000.99940.024184.12%5.19%
    O28d0.1933000.5571770.1827740.99850.04452
    Gd14c0.4405670.7500000.4823400.92680.01880
    GdScO3 annealed in air atmosphere
    O14c0.4688030.2500000.1083930.02980.01489
    Sc14b0.0000000.0000000.5000000.99840.011574.56%5.83%
    O28d0.2053470.5614590.1887951.06160.01910
    Gd14c0.4405660.7500000.4865511.00220.01328
    Yb:GdScO3 annealed in H2
    O14c0.4595760.2500000.1037011.12950.00793
    Sc14b0.0000000.0000000.5000001.00620.016484.45%5.66%
    O28d0.1991950.5590330.1832121.04820.01898
    Gd14c0.4397480.7500000.4858060.97810.01645
    Yb14c0.4510140.7500000.4043420.01890.07962
    Yb:GdScO3 annealed in air atmosphere
    O14c0.4629040.2500000.0928041.09520.01311
    Sc14b0.0000000.0000000.5000001.02410.023874.67%5.99%
    O28d0.1847430.5524960.1890581.01010.03297
    Gd14c0.4380270.7500000.4831590.98070.02051
    Yb14c0.4434780.7500000.4133920.01920.04427
    Yb:GdScO3 unannealed
    O14c0.4650200.2500000.3382901.36350.01824
    Sc14b0.0000000.0000000.5000000.97070.017805.20%7.13%
    O28d0.1778860.5733370.2022981.04660.03207
    Gd14c0.4371670.7500000.4820110.95400.01456
    Yb 14c0.4590290.7500000.3709780.01810.09000
    下载: 导出CSV

    表 2  不同气氛退火GdScO3和Yb: GdScO3的晶胞参数、晶胞体积和计算密度

    Table 2.  Refined lattice parameters, unit cell volumes and calculated densities of GdScO3 and Yb:GdScO3 annealed in different atmospheres.

    GdScO3abcV3ρ/(g·cm–3)
    GdScO3 annealed in H25.7502247.9363615.485410250.3313676.6380
    GdScO3 annealed in air5.7508607.9362715.485696250.3692686.6399
    Yb:GdScO3 annealed in H25.7476297.9318955.481167249.8841556.6584
    Yb:GdScO3 annealed in air5.7542687.9422105.488072250.8433136.6328
    Yb:GdScO3 unannealed5.7483977.9362445.482695250.1242816.6519
    下载: 导出CSV
  • [1]

    Chaix-Pluchery O, Kreisel J 2011 Phase Transitions 84 542Google Scholar

    [2]

    Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X, Wu L S 2020 Chin. Phys. B 29 66Google Scholar

    [3]

    Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D, Xia Z C 2019 J. Alloys Compd. 803 992Google Scholar

    [4]

    Rong S S, Faheem M B, Li Y B 2021 J. Electron. Sci. Technol. 19 119Google Scholar

    [5]

    Aamir M, Bibi I, Ata S, Jilani K, Majid F, Kamal S, Alwadai N, Raza M A S, Bashir M, Iqbal S, Aadil M, Iqbal M 2021 Ceram. Int. 47 16696Google Scholar

    [6]

    Lin S H, Lin Z Q, Chen C W 2021 Ceram. Int 47 16828Google Scholar

    [7]

    Rumyantsev S, Stillman W, Shur M, Heeg T, Schlom D G, Koveshnikov S, Kambhampati R, Tokranov V, Oktyabrsky S 2012 Int. J. High Speed Electron. Syst. 20 105Google Scholar

    [8]

    Mizzi C A, Koirala P, Marks L D 2018 Phys. Rev. Mater. 2 025001Google Scholar

    [9]

    Schäfer A, Besmehn A, Luysberg M, Winden A, Stoica T, Schnee M, Zander W, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2014 Semicond. Sci. Technol. 29 075005Google Scholar

    [10]

    Schäfer A, Rahmanizadeh K, Bihlmayer G, Luysberg M, Wendt F, Besmehn A, Fox A, Schnee M, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2015 J. Alloys Compd. 651 514Google Scholar

    [11]

    Uecker R, Velickov B, Klimm D, Bertram R, Bernhagen M, Rabe M, Albrecht M, Fornari R, Schlom D G 2008 J. Cryst. Growth 310 2649Google Scholar

    [12]

    Mansley Z R, Mizzi C A, Koirala P, Wen J, Marks L D 2020 Phys. Rev. Mater. 4 045003Google Scholar

    [13]

    Paull R J, Mansley Z R, Ly T, Marks L D, Poeppelmeier K R 2018 Inorg. Chem. 57 4104Google Scholar

    [14]

    Seidel S, Schmid A, Miersch C, Schubert J, Heitmann J 2021 Appl. Phys. Lett. 118 052902Google Scholar

    [15]

    Briones J, Guinto M C, Pelicano C M 2021 Mater. Lett. 298 130040Google Scholar

    [16]

    Liu Y 2021 IOP Conference Series:Earth and Environmental Science 781 022069Google Scholar

    [17]

    Hidde J, Guguschev C, Ganschow S, Klimm D 2018 J. Alloys Compd. 738 415Google Scholar

    [18]

    Wu Y D, Chen H, Hua J Y, Qin Y L, Ma X H, Wei Y Y, Zi Z F 2019 Ceram. Int. 45 13094Google Scholar

    [19]

    Peng F, Liu W, Zhang Q, Luo J, Sun D, Sun G, Zhang D, Wang X 2018 J. Lumin. 201 176Google Scholar

    [20]

    Li Q, Dong J, Wang Q, Xue Y, Tang H, Xu X, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [21]

    Li Q, Dong J, Wang Q, Zhao H, Xue Y, Tang H, Xu X, Xu J 2021 J. Lumin. 230 117681Google Scholar

    [22]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y, Wang Q, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [23]

    Wang D, Hou W, Li N, Xue Y, Wang Q, Xu X, Li D, Zhao H, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [24]

    Peng F, Liu W, Luo J, Sun D, Chen Y, Zhang H, Ding S, Zhang Q 2018 Crystengcomm 20 6291Google Scholar

    [25]

    Yamaji A, Kochurikhin V, Fujimoto Y, Futami Y, Yanagida T, Yokota Y, Kurosawa S, Yoshikawa A 2012 Phys. Status SolidiC 9 2267Google Scholar

    [26]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [27]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [28]

    Rietveld H 1967 Acta Crystallogr. 22 151Google Scholar

    [29]

    Rietveld H 1969 J. Appl. Crystallogr 2 65Google Scholar

    [30]

    张克从, 张乐潓 1997 晶体生长科学与技术(上) (北京: 科学出版社) 第472页

    Zhang K C, Zhang L H 1997 Crystal Growth Science and Technology (Vol. 1) (Beijing: Science Press) p472 (in Chinese)

    [31]

    Chopelas A 2011 Phys. Chem. Miner. 38 709Google Scholar

    [32]

    Grover V, Shukla R, Jain D, Deshpande S K, Arya A, Pillai C G S, Tyagi A K 2012 Chem. Mater. 24 2186Google Scholar

    [33]

    Chaix-Pluchery O, Kreisel J 2009 J. Phys. Condens. Matter 21 175901Google Scholar

    [34]

    Weber M C, Guennou M, Zhao H J, Íñiguez J, Vilarinho R, Almeida A, Moreira J A, Kreisel J 2016 Phys. Rev. B 94 214103Google Scholar

    [35]

    Iliev M N, Abrashev M V, Laverdière J, Jandl S, Gospodinov M M, Wang Y Q, Sun Y Y 2006 Phys. Rev. B 73 064302Google Scholar

    [36]

    Alsowayigh M M, Timco G A, Borilovic I, Alanazi A, Vitorica-Yrezabal I J, Whitehead G F S, McNaughter P D, Tuna F, O'Brien P, Winpenny R E P, Lewis D J, Collison D 2020 Inorg. Chem. 59 15796Google Scholar

    [37]

    Singh M K, Jang H M, Gupta H C, Katiyar R S 2008 J. Raman Spectrosc. 39 842Google Scholar

    [38]

    Ruffo A, Mozzati M C, Albini B, Galinetto P, Bini M 2020 J. Mater. Sci.: Mater. Electron. 31 18263Google Scholar

    [39]

    Nikl M, Nitsch K, Hybler J, Chval J, Reiche P 1996 Phys. Status Solidi B 196 7Google Scholar

    [40]

    李涛, 赵广军, 何晓明, 徐 军, 潘守夔 2002 人工晶体学报 31 456

    Li T, Zhao G J, He X M, Xu J, Pan S K 2002 J. Artif. Cryst. 31 456

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] 王昕, 康哲铭, 刘龙, 范贤光. 基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 物理学报, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [5] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [6] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [8] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [9] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究. 物理学报, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [10] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [11] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [12] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [13] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [14] 谈国太, 陈正豪. La1-xTexMnO3晶格结构的X射线粉末衍射分析. 物理学报, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [15] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [16] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  4665
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-04-10
  • 上网日期:  2022-07-29
  • 刊出日期:  2022-08-20

/

返回文章
返回