搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠离子层状氧化物材料相变及其对性能的影响

丁飞翔 容晓晖 王海波 杨佯 胡紫霖 党荣彬 陆雅翔 胡勇胜

引用本文:
Citation:

钠离子层状氧化物材料相变及其对性能的影响

丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜

Phase transitions of Na-ion layered oxide materials and their influence on properties

Ding Fei-Xiang, Rong Xiao-Hui, Wang Hai-Bo, Yang Yang, Hu Zi-Lin, Dang Rong-Bin, Lu Ya-Xiang, Hu Yong-Sheng
PDF
HTML
导出引用
  • 钠离子电池近年来在大规模储能领域展现出优异的发展和应用前景. 由于钠离子层状过渡金属氧化物正极材料(NaxTMO2)具有比容量高、容易制备、电压可调和成本低的优势, 在学术界和产业界得到了广泛的关注与研究. 但较大的Na+半径和较强的Na+-Na+静电排斥作用, 导致NaxTMO2具有多种结构类型和复杂的结构转变, 以及由此形成了多重结构-性能关系. 本文详细介绍了NaxTMO2的结构类型, 综述了在Na+脱出/嵌入过程中引发的结构演变, 旨在揭示钠离子层状过渡金属氧化物正极材料结构转变机理及其对电化学性能的影响, 最后讨论了现存的挑战并提出了改进策略.
    Na-ion batteries possess great potential applications in the large-scale energy storage. The Na-ion layered oxide cathode (NaxTMO2) has received increasing attention in scientific and industrial research due to its high capacity, easy manufacture, adjustable voltage, and low cost. However, the larger the Na+ radius and the stronger the Na+-Na+ electrostatic repulsion is, which will lead to various structural configurations and complex structural transitions, resulting in multiple structure-property connections. In this paper, the structural types of Na-ion layered transition metal oxide cathode materials are introduced, and their structural evolutions during Na+ de/intercalation are summarized for revealing the mechanism for structural transformation of Na-ion layered transition-metal oxide cathode material and its effect on electrochemical performance; the existing challenges are discussed; the improvement strategies are proposed finally.
      通信作者: 容晓晖, rong@iphy.ac.cn ; 胡勇胜, yshu@iphy.ac.cn
      作者简介:
      容晓晖, 中国科学院物理研究所特聘研究员、博士生导师. 主要从事新型钠离子电池正极材料(层状氧化物、磷酸盐、普鲁士蓝等)、固态钠电池(NASICON固体电解质、新型聚合物固体电解质的设计与合成)研究. 至今已在Nature Sustainability、Joule、Journal of American Chemical Society、Energy Storage Materials等国际知名学术期刊上发表学术论文30余篇, 申请20余项国际和中国发明专利, 参与撰写《钠离子电池科学与技术》, 撰写原创科普文章50余篇. 目前担任ACS Energy Letters等多个专业杂志的审稿人
      胡勇胜, 中科院物理研究所研究员, 英国皇家化学学会会士/英国物理学会会士, 中国科协十大代表. 先后承担了国家科技部863创新团队、国家杰出青年科学基金等项目. 自2001年以来, 主要从事先进二次电池的应用基础研究, 立足科学前沿和聚焦国家重大需求, 注重基础与应用, 在钠(锂)离子电池正负极材料、多尺度结构演化、功能电解质材料等方面取得多项创新性研究结果. 在Science、Nature Energy、Nature Mater.、Joule、Nature Commun.、Science Adv.等国际重要学术期刊上共合作发表论文200余篇, 引用30000余次, H-因子94, 连续8年入选科睿唯安 “高被引科学家”名录. 合作申请60余项中国发明专利、已授权40项专利(包括多项美国、日本、欧盟专利). 目前担任ACS Energy Letters杂志资深编辑. 最近所获荣誉与奖励包括第十四届中国青年科技奖、国际电化学学会Tajima Prize、英国皇家学会牛顿高级访问学者等. 开发的钠离子电池技术在第三届国际储能创新大赛中荣获“2019储能技术创新典范TOP10”和“评委会大奖”、第九届中国科学院北京分院科技成果转化特等奖、2020年科创中国·科技创新创业大赛TOP10、2020年中关村国际前沿科技创新大赛总决赛亚军、入选2020年度中国科学十大进展30项候选成果, 合著《钠离子电池科学与技术》专著一本(科学出版社2020年出版)
    • 基金项目: 国家自然科学基金(批准号: 51725206, 52122214, 52072403)、中国科学院战略性先导科技专项(批准号: XDA21070500)、中国科学院青年创新促进会(批准号: 2020006)、中国博士后科学基金(批准号: 2021M703460)和北京市自然科学基金(批准号: 2212022)资助的课题.
      Corresponding author: Rong Xiao-Hui, rong@iphy.ac.cn ; Hu Yong-Sheng, yshu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51725206, 52122214, 52072403), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), the China Postdoctoral Science Foundation (Grant No. 2021M703460), and the Natural Science Foundation of Beijing, China (Grant No. 2212022).
    [1]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 物理学报 67 120601Google Scholar

    Lu Y X, Zhao C L, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [2]

    Sun Y, Guo S, Zhou H 2019 Energy Environ Sci. 12 825Google Scholar

    [3]

    Kubota K, Kumakura S, Yoda Y, Kuroki K, Komaba S 2018 Advan. Energy Mater. 8 1703415Google Scholar

    [4]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X 2019 Small 0 1805381

    [5]

    Kim S W, Seo D H, Ma X, Ceder G, Kang K 2012 Advan. Energy Mater. 2 710Google Scholar

    [6]

    Kim H, Park I, Lee S, Kim H, Park K Y, Park Y U, Kim H, Kim J, Lim H D, Yoon W S, Kang K 2013 Chem. Mater. 25 3614Google Scholar

    [7]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Advan. Energy Mater. 8 1702869Google Scholar

    [8]

    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B 2013 Angew. Chem. Int. Ed. 52 1964Google Scholar

    [9]

    Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J 2014 Angew. Chem. Int. Ed. 53 5892Google Scholar

    [10]

    Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu Y S, Chen L 2017 Small 13 1701835Google Scholar

    [11]

    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y S, Maier J, Yu Y 2018 Mater. Today 21 960Google Scholar

    [12]

    Delmas C, Fouassier C, Hagenmuller P 1980 Physica B+C 99 81Google Scholar

    [13]

    胡勇胜, 陆雅翔, 陈立泉 2020 钠离子电池科学与技术 (北京: 科学出版社) 第20页

    Hu Y S, Lu Y X, Chen L Q 2020 Na-ion batteries:science and technology (Beijing: Science Press) p20 (in Chinese)

    [14]

    Mortemard de Boisse B, Cheng J H, Carlier D, Guignard M, Pan C J, Bordère S, Filimonov D, Drathen C, Suard E, Hwang B-J, Wattiaux A, Delmas C 2015 J. Mater. Chem. A 3 10976Google Scholar

    [15]

    Mortemard de Boisse B, Liu G, Ma J, Nishimura S I, Chung S C, Kiuchi H, Harada Y, Kikkawa J, Kobayashi Y, Okubo M, Yamada A 2016 Nat. Commun. 7 11397Google Scholar

    [16]

    Nanba Y, Iwao T, Boisse B M d, Zhao W, Hosono E, Asakura D, Niwa H, Kiuchi H, Miyawaki J, Harada Y, Okubo M, Yamada A 2016 Chem. Mater. 28 1058Google Scholar

    [17]

    Perez A J, Batuk D, Saubanère M, Rousse G, Foix D, McCalla E, Berg E J, Dugas R, H. W. van den Bos K, Doublet M L, Gonbeau D, Abakumov A, Tendeloo G, Tarascon J-M 2016 Chem. Mater. 28 8278Google Scholar

    [18]

    Zhao C, Wang Q, Yao Z, Wang J, Sanchez-Lengeling B, Ding F, Qi X, Lu Y, Bai X, Li B, Li H, Aspuru-Guzik A, Huang X, Delmas C, Wagemaker M, Chen L, Hu Y S 2020 Science 370 708

    [19]

    Liu J, Kan W H, Ling C D 2021 J. Power Sources 481 229139Google Scholar

    [20]

    Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I 2012 Inorg. Chem. 51 6211Google Scholar

    [21]

    Sathiya M, Jacquet Q, Doublet M-L, Karakulina O M, Hadermann J, Tarascon J M 2018 Advan. Energy Mater. 8 1702599Google Scholar

    [22]

    Croguennec L, Pouillerie C, Mansour A N, Delmas C 2001 J. Mater. Chem. 11 131Google Scholar

    [23]

    Mortemard de Boisse B, Reynaud M, Ma J, Kikkawa J, Nishimura S I, Casas-Cabanas M, Delmas C, Okubo M, Yamada A 2019 Nat. Commun. 10 2185Google Scholar

    [24]

    Maazaz A, Delmas C, Hagenmuller P 1983 J. Incl. Phenom. 1 45Google Scholar

    [25]

    Didier C, Guignard M, Denage C, Szajwaj O, Ito S, Saadoune I, Darriet J, Delmas C 2011 Electrochem. Solid-State Lett. 14 A75Google Scholar

    [26]

    Kobota K, Ikeuchi I, Nakayama T, Takei C, Yabuuchi N, Shiiba H, Nakayama M, Komaba S 2014 J. Phys. Chem. C 119 166

    [27]

    Yabuuchi N, Komaba S 2014 Sci. Techn. Advan. Mater. 15 043501Google Scholar

    [28]

    Silván B, Gonzalo E, Djuandhi L, Sharma N, Fauth F, Saurel D 2018 J. Mater. Chem. A 6 15132Google Scholar

    [29]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [30]

    赵成龙 2020 博士学位论文 (北京: 中国科学院大学)

    Zhao C L 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [31]

    Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q 2014 Chin Phys B 23

    [32]

    Lu Z, Dahn J R 2001 J. Electrochem. Soc. 148 A1225Google Scholar

    [33]

    Lee D H, Xu J, Meng Y S 2013 Phys. Chem. Chem. Phys. 15 3304Google Scholar

    [34]

    Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L, Guo Y G 2018 Sci. Adv. 4 eaar6018Google Scholar

    [35]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [36]

    Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S 2016 Angew. Chem. Int. Ed. 55 12760Google Scholar

    [37]

    Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X, Delmas C, Chen L 2019 Joule 3 503Google Scholar

    [38]

    Bai X, Sathiya M, Mendoza-Sánchez B, Iadecola A, Vergnet J, Dedryvère R, Saubanère M, Abakumov A M, Rozier P, Tarascon J-M 2018 Advan. Energy Mater. 8 1802379

    [39]

    Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S 2014 J. Mater. Chem. A 2 16851Google Scholar

    [40]

    Gao A, Zhang Q, Li X, Shang T, Tang Z, Lu X, Luo Y, Ding J, Kan W H, Chen H, Yin W, Wang X, Xiao D, Su D, Li H, Rong X, Yu X, Yu Q, Meng F, Nan C, Delmas C, Chen L, Hu Y, Gu L, 2021 Nat. Sustain. 5 214Google Scholar

    [41]

    Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X Q, Chen L, Huang X 2013 Nat. Commun. 4 2365Google Scholar

    [42]

    Wang Y, Xiao R, Hu Y S, Avdeev M, Chen L 2015 Nat. Commun. 6 6954Google Scholar

    [43]

    Shanmugam R, Lai W 2014 ECS Electrochem. Lett. 3 A23Google Scholar

    [44]

    Yu H, Ren Y, Xiao D, Guo S, Zhu Y, Qian Y, Gu L, Zhou H 2014 Angew. Chem. Int. Ed. 53 8963Google Scholar

    [45]

    Guo S, Liu P, Sun Y, Zhu K, Yi J, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 11701Google Scholar

    [46]

    Wang P F, Yao H R, Zuo T T, Yin Y X, Guo Y G 2017 Chem. Commun. 53 1957Google Scholar

    [47]

    丁飞翔, 高飞, 容晓晖, 杨凯, 陆雅翔, 胡勇胜 2019 物理化学学报 36 1904022Google Scholar

    Ding F X, Gao F, Rong X H, Yang K, Lu Y X, Hu Y S 2019 Acta Phys-Chim Sin. 36 1904022Google Scholar

    [48]

    BRACONNIER J J, DELMAS C, HAGENMULLER 1982 Mat. Res. Bull. 17 993Google Scholar

    [49]

    Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J Solid State Chem 3 1Google Scholar

    [50]

    Ma X, Chen H, Ceder G 2011 J Electrochem Soc 158 A1307Google Scholar

    [51]

    Takeda Y, Nakahara K, Nishijima M, Imanishi N, Yamamoto O 1994 Mater Res Bull 29 659Google Scholar

    [52]

    Braconnier J J, Delmas C, Fouassier C, Hagenmuller P 1980 Mat. Res. Bull. 15 1797Google Scholar

    [53]

    Han M H, Gonzalo E, Casas-Cabanas M, Rojo T 2014 J Power Sources 258 266Google Scholar

    [54]

    Wang L, Wang J, Zhang X, Ren Y, Zuo P, Yin G, Wang J 2017 Nano Energy 34 215Google Scholar

    [55]

    Kim D, Lee E, Slater M, Lu W, Rood S, Johnson C S 2012 Electrochem Commun 18 66Google Scholar

    [56]

    Linqin M, Xinguo Q, Yongsheng H, Hong L, Liquan C, Xuejie H J E S S 2016 Energy Storage Sci Techn 5 324Google Scholar

    [57]

    Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun C J, Wen J, Wang J, Miller D, Amine K, Ma Z 2016 Advan. Energy Mater. 6 1601306Google Scholar

    [58]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 ACS Appl. Mater. Interfaces 7 8585Google Scholar

    [59]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 Appl. Mater. Interfaces 7 8585

    [60]

    Maletti S, Sarapulova A, Schokel A, Mikhailova D 2019 ACS Appl. Mater. Interfaces 11 33923Google Scholar

    [61]

    Wang P F, Yao H R, Liu X Y, Zhang J N, Gu L, Yu X Q, Yin Y X, Guo Y G 2017 Advan. Mater. 29 1700210Google Scholar

    [62]

    Yao H R, Wang P F, Gong Y, Zhang J, Yu X, Gu L, OuYang C, Yin Y X, Hu E, Yang X-Q, Stavitski E, Guo Y, Wan L 2017 J. Am. Chem. Soc. 139 8440Google Scholar

    [63]

    Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F, Chakir M, Tarascon J M 2019 Advan. Energy Mater. 9 1901785Google Scholar

    [64]

    Mariyappan S, Marchandier T, Rabuel F, Iadecola A, Rousse G, Morozov A V, Abakumov A M, Tarascon J-M 2020 Chem. Mater. 32 1657Google Scholar

    [65]

    Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 J Mater Chem A 9 12830Google Scholar

    [66]

    Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B 2021 Energy Envir. Sci. 14 2883Google Scholar

    [67]

    Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, Biasi L, Kubel C, Brezesinski T, Bhattacharya S, Hahn H, Breitung B 2018 Nat. Commun. 9 3400Google Scholar

    [68]

    Zhao C, Ding F, Lu Y, Chen L, Hu Y S 2020 Angew. Chem. Int. Ed. Engl. 59 264Google Scholar

    [69]

    Ding F, Zhao C, Zhou D, Meng Q, Xiao D, Zhang Q, Niu Y, Li Y, Rong X, Lu Y, Chen L, Hu Y S 2020 Energy Storage Mater. 30 420

    [70]

    Zhou Q, Li Y Q, Tang F, Li K X, Rong X H, Lu Y X, Chen L Q, Hu Y S 2021 Chin. Phys. Lett. 38 076501Google Scholar

    [71]

    Gonzalo E, Han M H, López del Amo J M, Acebedo B, Casas-Cabanas M, Rojo T 2014 J. Mater. Chem. A 2 18523Google Scholar

    [72]

    Parant J P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J. Solid State Chem. 3 1Google Scholar

    [73]

    Paulsen J M, Dahn J R 1999 Solid State Ionics 126 3Google Scholar

    [74]

    Liu X, Zhong G, Xiao Z, Zheng B, Zuo W, Zhou K, Liu H, Liang Z, Xiang Y, Chen Z, Ortiz G, Fu R, Yang Y 2020 Nano Energy 76 104997Google Scholar

    [75]

    Ding F, Meng Q, Yu P, Wang H, Niu Y, Li Y, Yang Y, Rong X, Liu X, Lu Y, Chen L, Hu Y S 2021 Adv. Funct. Mater. 31 2001120

    [76]

    Guo K S, Lu Y X, Wang H L, Ma X B, Li Z Y, Hu Y S, Dongfeng Chen 2019 Chin. Phys. B 28 68203Google Scholar

    [77]

    Fei Xie  Y L, Liquan Chen , Hu Y S 2021 Chin. Phys. Lett. 38 118401Google Scholar

    [78]

    Zhao C, Yao Z, Wang Q, Li H, Wang J, Liu M, Ganapathy S, Lu Y, Cabana J, Li B, Bai X, Aspuru-Guzik A, Wagemaker M, Chen L, Hu Y S 2020 J. Am. Chem. Soc. 142 5742Google Scholar

    [79]

    Liang X, Yu T Y, Ryu H H, Sun Y-K 2022 Energy Storage Mater. 47 515

  • 图 1  (a)—(e)常见钠离子层状材料的晶体结构示意图, 插图为层状结构中过渡金属和钠离子多面体的连接机理示意图; (f)从垂直于过渡金属层的方向观察六方和单斜结构和晶胞参数的区别和联系

    Fig. 1.  (a)–(e) Illustrations of crystal structures relevant to the Na+ layered oxide cathode materials, insets are the face-sharing schemes of TMO6 and NaO6 in the layered structures; (f) the view perpendicular to the layer direction highlighting the relationship between the hexagonal and monoclinic unit cells.

    图 2  各种3d过渡金属离子在钠离子电池层状氧化物中的特点[13]

    Fig. 2.  Comparison of the characteristics of 3d TM used in NIB layered cathode materials[13].

    图 3  已报道的P2相和O3相中层状氧化物的阳离子势[18]

    Fig. 3.  Cationic potential of representative P2- and O3-type Na-ion layered oxides[18].

    图 4  当碱金属阳离子和阴离子离子半径分别相同时O和P型配位环境中的阴离子距离对比[19]

    Fig. 4.  Comparison of anion-anion distances in O- and P-type coordinations assuming the same cation and anion radii[19]

    图 5  (a) NaNi0.5Mn0.5O2材料在2.2—3.8和2.2—4.5 V电压范围内的首周充放电曲线[20]; (b) Na1–xNi0.5Mn0.5O2电极的非原位XRD图谱[20], 星号代表集流体镍网的衍射峰; (c)NaNi0.5Mn0.5O2材料首圈在C/20C倍率下充放电过程中的原位XRD图谱[21]

    Fig. 5.  (a) Initial charge-discharge curves of the NaNi0.5Mn0.5O2 cell at a rate of 1/50C (4.8 mA/g) in the voltage ranges of 2.2–3.8 and 2.2–4.5 V versus sodium metal; (b) ex situ XRD patterns of the Na1–xNi0.5Mn0.5O2[20], asterisks show a nickel mesh used as a current collector; (c) in situ XRD patterns of the NaNi0.5Mn0.5O2 material at C/20 rate[21].

    图 6  (a) Na1–xNi0.5Mn0.5O2电极的晶体结构转化示意图; (b) O3和O'3相之间的转化关系; (c) P3和P'3相之间的转化关系[20]

    Fig. 6.  (a) Schematic illustrations of the crystal structure of Na1–xNi0.5Mn0.5O2; (b) the transforming relationship between O3 and O'3; (c) the transforming relationship between between P3 and P'3[20].

    图 7  (a) P3相过渡金属层可能的滑移方向αβ; (b) O1相的晶体结构示意图; (c)通过αβ滑移P3相向O3, O1, OPO13和O1PO3相的转变示意图; (d)通过αβ滑移P3相向OO13, O1OP3, POO13和PO1O3相的转变示意图; (e)通过αβ滑移P3相向OP2相的转变示意图. 晶体结构观察方向为[100], 钠位为黄色多面体, 过渡金属位于紫色八面体, 结构示意图中没有考虑晶胞参数的变化[19]

    Fig. 7.  (a) P3 phase TM layer displacement vectors α and β; (b) schematic illustrations of the crystal structure of O1 phase; (c) phase transitions from P3 to O3, O1, OPO13 and O1PO3 via shifting α and β; (d) phase transitions from P3 to OO13, O1OP3, O1OP3 and POO13 via shifting α or β; (e) phase transition from P3 to OP2 via shifting α and β. All structures viewed along [100] direction, all cell parameters changes have been ignored and TM octahedra are shown in purple and all Na sites in yellow[19].

    图 8  (a) Na2RuO3的原位XRD图谱和充放电曲线; (b)根据原位实验确定的随钠含量变化的相图; (c)库仑力对Na2–xRuO3材料自有序过程的机理演示[23]

    Fig. 8.  (a) XRD patterns tested in situ during the first cycle of Na2RuO3 with the corresponding cycling curve; (b) phase diagram as determined from the in situ experiment as a function of the sodium content; (c) coulombic forces and resultant self-ordering in Na2–xRuO3[23].

    图 9  (a) O3-NaFeO2和(b) O3-NaCrO2电极在不同充电截止电压的充放电曲线[26,27]; (c)充电至高电压时Na1–xCrO2材料模拟和测试的XRD 图谱; (d) NaxFeO2材料在钠离子脱出过程的相图和铁迁移示意图[28]; (e)脱钠过程中过渡金属离子迁移机理示意图[29]

    Fig. 9.  Charge-discharge curves of (a) NaFeO2 and (b) NaCrO2 cathode[26,27]; (c) simulated and observed XRD patterns of Na1–xCrO2 cathode charged to high voltage; (d) scheme of phase evolution and iron migration upon sodium extraction in NaxFeO2[28]; (e) a proposed mechanism of Men+ (Metal ion) migration process on the desodiated process[29].

    图 10  充放电过程中O3型材料的结构演变汇总[30]

    Fig. 10.  Summary of structure evolution for O3-type materials during the charge-discharge process[30].

    图 11  (a) P2-Na2/3Ni1/3Mn2/3O2的充放电曲线; (b) P2-Na2/3Ni1/3Mn2/3O2首周充电过程中的原位XRD图谱[32]

    Fig. 11.  (a) Charge-discharge curve of P2-Na2/3Ni1/3Mn2/3O2; (b) XRD patterns measured during the first charge of the P2-Na2/3Ni1/3Mn2/3O2 cathode in situ cell[32].

    图 12  (a) P2-Na2/3Ni1/3Mn2/3O2的典型充电曲线; (b) P2-NaδNi1/3Mn2/3O2层内三棱柱位置钠离子/空位有序排布示意图(蓝色球代表占据Nae位钠离子, 粉色球代表占据Naf位钠离子)[33]

    Fig. 12.  (a) Typical charge profiles of P2-Na2/3Ni1/3Mn2/3O2; (b) in-plane Na+/vacancy orderings of P2-NaδNi1/3Mn2/3O2 in the triangular lattice (blue balls: Na-ions on Nae sites, pink balls: Na-ions on Naf sites) [33].

    图 13  (a) P2-Na2/3Ni1/3Mn2/3O2和(b) P2-Na2/3Ni1/3Mn1/3Ti1/3O2电极在2.5—4.3 V电压范围内首周充电过程中的原位XRD图谱[34]

    Fig. 13.  In situ XRD patterns of (a) P2-Na2/3Ni1/3Mn2/3O2 and (b) P2-Na2/3Ni1/3Mn1/3Ti1/3O2 electrodes during the first charge between 2.5 and 4.3 V[34].

    图 14  P2-Na2/3Ni1/3Mn2/3O2电极在1.5—4.0 V电压范围内的首周充放电曲线[35]

    Fig. 14.  Initial charge-discharge curves of P2-Na2/3Ni1/3Mn2/3O2 in the voltage of 1.5–4.0 V[35].

    图 15  (a) P2相过渡金属层可能滑移的方向γ; (b)通过γ滑移P2相向O2相的转变示意图; (c)通过γ滑移P2相向OP4相的转变示意图. 晶体结构观察方向为[100], 钠位为黄色多面体, 过渡金属位于紫色八面体, 结构示意图中没有考虑晶胞参数的变化[19]

    Fig. 15.  (a) P2 phase TM layer displacement vectors γ; (b) phase transitions from P2 to O2 via shifting γ; (c) phase transitions from P2 o OP4 via shifting γ. All structures viewed along [100] direction, all cell parameters changes have been ignored and TM octahedra are shown in purple and all Na sites in yellow[19].

    图 16  (a) (b) P2-和P3-Na0.6Li0.2Mn0.8O2正极材料钠离子脱嵌过程中的拓扑保护机制[40]

    Fig. 16.  (a)(b) Topological protection mechanism during Na-ion deintercalation of P2-and P3-Na0.6Li0.2Mn0.8O2[40].

    图 17  充放电过程中P2型材料的结构演变汇总[30]

    Fig. 17.  Summary of structure evolution for P2-type materials during the charge-discharge process[30].

    图 18  (a) Na0.66Li0.22Ti0.78O2电极在0.1 C倍率下0.4—2.5 V电压范围内的充放电曲线; (b) Na0.66Li0.22Ti0.78O2电极在C/7倍率下首周充放电过程中的原位XRD图谱[41]; (c) Na0.6Cr0.6Ti0.4O2电极在0.1 C倍率下0.5—2.5 V电压范围内的首周充放电曲线[42]; (d) Na0.6Cr0.6Ti0.4O2电极在C/5倍率下首周充放电过程中的原位XRD图谱[42]

    Fig. 18.  (a) The discharge-charge curves of Na0.66Li0.22Ti0.78O2 at a current rate of 0.1 C (10.6 mA/g) in the voltage range of 0.4–2.5 V; (b) in situ XRD patterns collected during the first discharge-charge of the Na0.66Li0.22Ti0.78O2 electrode under a current rate of C/7[41]; (c) the first discharge-charge curve of Na0.6Cr0.6Ti0.4O2 in the voltage range of 0.5–2.5 V; (d) in situ XRD patterns collected during the first discharge-charge of the Na0.6Cr0.6Ti0.4O2 electrode under a current rate of C/5[42].

    图 19  O3-Nax[Ni0.33Fe0.33Mn0.33]O2在(a) 2.0—4.0 V和(b) 2.0—4.3 V之间同步辐射原位XRD测试结果以及充放电曲线[57]

    Fig. 19.  In situ XRD patterns tested during cycling of NaxNi1/3Fe1/3Mn1/3O2 electrode in the voltage range of (a) 2.0–4.0 V and (b) 2.0–4.3 V[57].

    图 20  (a) NaNi0.5Mn0.4Ti0.1O2和(b) NaNi0.4Cu0.1Mn0.4Ti0.1O2电极在2.0—4.5 V电压范围内的原位XRD图谱[63]

    Fig. 20.  In situ XRD patterns of (a) NaNi0.5Mn0.4Ti0.1O2 and (b) NaNi0.4Cu0.1Mn0.4Ti0.1O2 electrode in the voltage range of 2.0–4.5 V[63]

    图 21  (a)高熵构型稳定O3结构的机理阐释[68]; (b) NaNi0.6Fe0.25Mn0.15O2材料在2.0—4.2 V电压范围内的原位XRD图谱和(c)结构演变示意图[69]

    Fig. 21.  (a) Possible mechanism of high-entropy composition in facilitating layered O3-type structure[68]; in situ XRD patterns of (b) NaNi0.6Fe0.25Mn0.15O2 electrode in the voltage range of 2.0–4.2 V and (c) schematic of structural evolution[69].

    图 22  (a)P2-和(c)O3-Na2/3Fe2/3Mn1/3O2 样品的XRD 谱和SEM图片;(b) P2-和(d)O3- Na2/3Fe2/3Mn1/3O2 样品前两周在1.5—4.2 V电压范围内的充放电曲线对比[71]

    Fig. 22.  XRD patterns and SEM images of (a) P2- and (c) O3- Na2/3Fe2/3Mn1/3O2 samples; comparison of charge-discharge capacity of (b) P2- and (d) O3- Na2/3Fe2/3Mn1/3O2 within the 1 st and 2 nd cycles in the voltage range of 1.5–4.2 V[71].

    图 23  不同冷却方式对材料晶体结构中空位的影响示意图[74]

    Fig. 23.  Schematic illustration of the effects of different cooling methods on the vacancies of the crystal structures[74].

    表 1  常见的结构对应的空间群和原子坐标

    Table 1.  The space groups and corresponding atomic positions of reported structures.

    结构空间群
    (代号)
    原子占位
    NaeNafNaMO
    O3${R}\bar{3}{m}$
    (167)
    3b
    (0, 0, 1/2)
    3a
    (0, 0, 0)
    6c
    (0, 0, ~0.27)
    O'3C2/m
    (12)
    2d
    (0, 1/2, 1/2)
    2a
    (0, 0, 0)
    4i
    (~0.28, 0, ~0.8)
    P3R3m
    (160)
    3a
    (0, 0, ~0.17)
    3a
    (0, 0, 0)
    3a
    (0, 0, ~0.4)
    P2P63/mmc
    (194)
    2d
    (2/3, 1/3, 1/4)
    2b
    (0, 0, 1/4)
    2a
    (0, 0, 0)
    4f
    (1/3, 2/3, ~0.09)
    O2P63mc
    (186)
    2b
    (1/3, 2/3, ~0.24)
    2b
    (2/3, 1/3, 0)
    2b
    (2/3, 1/3, ~0.39)
    下载: 导出CSV
  • [1]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 物理学报 67 120601Google Scholar

    Lu Y X, Zhao C L, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [2]

    Sun Y, Guo S, Zhou H 2019 Energy Environ Sci. 12 825Google Scholar

    [3]

    Kubota K, Kumakura S, Yoda Y, Kuroki K, Komaba S 2018 Advan. Energy Mater. 8 1703415Google Scholar

    [4]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X 2019 Small 0 1805381

    [5]

    Kim S W, Seo D H, Ma X, Ceder G, Kang K 2012 Advan. Energy Mater. 2 710Google Scholar

    [6]

    Kim H, Park I, Lee S, Kim H, Park K Y, Park Y U, Kim H, Kim J, Lim H D, Yoon W S, Kang K 2013 Chem. Mater. 25 3614Google Scholar

    [7]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Advan. Energy Mater. 8 1702869Google Scholar

    [8]

    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B 2013 Angew. Chem. Int. Ed. 52 1964Google Scholar

    [9]

    Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J 2014 Angew. Chem. Int. Ed. 53 5892Google Scholar

    [10]

    Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu Y S, Chen L 2017 Small 13 1701835Google Scholar

    [11]

    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y S, Maier J, Yu Y 2018 Mater. Today 21 960Google Scholar

    [12]

    Delmas C, Fouassier C, Hagenmuller P 1980 Physica B+C 99 81Google Scholar

    [13]

    胡勇胜, 陆雅翔, 陈立泉 2020 钠离子电池科学与技术 (北京: 科学出版社) 第20页

    Hu Y S, Lu Y X, Chen L Q 2020 Na-ion batteries:science and technology (Beijing: Science Press) p20 (in Chinese)

    [14]

    Mortemard de Boisse B, Cheng J H, Carlier D, Guignard M, Pan C J, Bordère S, Filimonov D, Drathen C, Suard E, Hwang B-J, Wattiaux A, Delmas C 2015 J. Mater. Chem. A 3 10976Google Scholar

    [15]

    Mortemard de Boisse B, Liu G, Ma J, Nishimura S I, Chung S C, Kiuchi H, Harada Y, Kikkawa J, Kobayashi Y, Okubo M, Yamada A 2016 Nat. Commun. 7 11397Google Scholar

    [16]

    Nanba Y, Iwao T, Boisse B M d, Zhao W, Hosono E, Asakura D, Niwa H, Kiuchi H, Miyawaki J, Harada Y, Okubo M, Yamada A 2016 Chem. Mater. 28 1058Google Scholar

    [17]

    Perez A J, Batuk D, Saubanère M, Rousse G, Foix D, McCalla E, Berg E J, Dugas R, H. W. van den Bos K, Doublet M L, Gonbeau D, Abakumov A, Tendeloo G, Tarascon J-M 2016 Chem. Mater. 28 8278Google Scholar

    [18]

    Zhao C, Wang Q, Yao Z, Wang J, Sanchez-Lengeling B, Ding F, Qi X, Lu Y, Bai X, Li B, Li H, Aspuru-Guzik A, Huang X, Delmas C, Wagemaker M, Chen L, Hu Y S 2020 Science 370 708

    [19]

    Liu J, Kan W H, Ling C D 2021 J. Power Sources 481 229139Google Scholar

    [20]

    Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I 2012 Inorg. Chem. 51 6211Google Scholar

    [21]

    Sathiya M, Jacquet Q, Doublet M-L, Karakulina O M, Hadermann J, Tarascon J M 2018 Advan. Energy Mater. 8 1702599Google Scholar

    [22]

    Croguennec L, Pouillerie C, Mansour A N, Delmas C 2001 J. Mater. Chem. 11 131Google Scholar

    [23]

    Mortemard de Boisse B, Reynaud M, Ma J, Kikkawa J, Nishimura S I, Casas-Cabanas M, Delmas C, Okubo M, Yamada A 2019 Nat. Commun. 10 2185Google Scholar

    [24]

    Maazaz A, Delmas C, Hagenmuller P 1983 J. Incl. Phenom. 1 45Google Scholar

    [25]

    Didier C, Guignard M, Denage C, Szajwaj O, Ito S, Saadoune I, Darriet J, Delmas C 2011 Electrochem. Solid-State Lett. 14 A75Google Scholar

    [26]

    Kobota K, Ikeuchi I, Nakayama T, Takei C, Yabuuchi N, Shiiba H, Nakayama M, Komaba S 2014 J. Phys. Chem. C 119 166

    [27]

    Yabuuchi N, Komaba S 2014 Sci. Techn. Advan. Mater. 15 043501Google Scholar

    [28]

    Silván B, Gonzalo E, Djuandhi L, Sharma N, Fauth F, Saurel D 2018 J. Mater. Chem. A 6 15132Google Scholar

    [29]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [30]

    赵成龙 2020 博士学位论文 (北京: 中国科学院大学)

    Zhao C L 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [31]

    Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q 2014 Chin Phys B 23

    [32]

    Lu Z, Dahn J R 2001 J. Electrochem. Soc. 148 A1225Google Scholar

    [33]

    Lee D H, Xu J, Meng Y S 2013 Phys. Chem. Chem. Phys. 15 3304Google Scholar

    [34]

    Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L, Guo Y G 2018 Sci. Adv. 4 eaar6018Google Scholar

    [35]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [36]

    Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S 2016 Angew. Chem. Int. Ed. 55 12760Google Scholar

    [37]

    Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X, Delmas C, Chen L 2019 Joule 3 503Google Scholar

    [38]

    Bai X, Sathiya M, Mendoza-Sánchez B, Iadecola A, Vergnet J, Dedryvère R, Saubanère M, Abakumov A M, Rozier P, Tarascon J-M 2018 Advan. Energy Mater. 8 1802379

    [39]

    Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S 2014 J. Mater. Chem. A 2 16851Google Scholar

    [40]

    Gao A, Zhang Q, Li X, Shang T, Tang Z, Lu X, Luo Y, Ding J, Kan W H, Chen H, Yin W, Wang X, Xiao D, Su D, Li H, Rong X, Yu X, Yu Q, Meng F, Nan C, Delmas C, Chen L, Hu Y, Gu L, 2021 Nat. Sustain. 5 214Google Scholar

    [41]

    Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X Q, Chen L, Huang X 2013 Nat. Commun. 4 2365Google Scholar

    [42]

    Wang Y, Xiao R, Hu Y S, Avdeev M, Chen L 2015 Nat. Commun. 6 6954Google Scholar

    [43]

    Shanmugam R, Lai W 2014 ECS Electrochem. Lett. 3 A23Google Scholar

    [44]

    Yu H, Ren Y, Xiao D, Guo S, Zhu Y, Qian Y, Gu L, Zhou H 2014 Angew. Chem. Int. Ed. 53 8963Google Scholar

    [45]

    Guo S, Liu P, Sun Y, Zhu K, Yi J, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 11701Google Scholar

    [46]

    Wang P F, Yao H R, Zuo T T, Yin Y X, Guo Y G 2017 Chem. Commun. 53 1957Google Scholar

    [47]

    丁飞翔, 高飞, 容晓晖, 杨凯, 陆雅翔, 胡勇胜 2019 物理化学学报 36 1904022Google Scholar

    Ding F X, Gao F, Rong X H, Yang K, Lu Y X, Hu Y S 2019 Acta Phys-Chim Sin. 36 1904022Google Scholar

    [48]

    BRACONNIER J J, DELMAS C, HAGENMULLER 1982 Mat. Res. Bull. 17 993Google Scholar

    [49]

    Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J Solid State Chem 3 1Google Scholar

    [50]

    Ma X, Chen H, Ceder G 2011 J Electrochem Soc 158 A1307Google Scholar

    [51]

    Takeda Y, Nakahara K, Nishijima M, Imanishi N, Yamamoto O 1994 Mater Res Bull 29 659Google Scholar

    [52]

    Braconnier J J, Delmas C, Fouassier C, Hagenmuller P 1980 Mat. Res. Bull. 15 1797Google Scholar

    [53]

    Han M H, Gonzalo E, Casas-Cabanas M, Rojo T 2014 J Power Sources 258 266Google Scholar

    [54]

    Wang L, Wang J, Zhang X, Ren Y, Zuo P, Yin G, Wang J 2017 Nano Energy 34 215Google Scholar

    [55]

    Kim D, Lee E, Slater M, Lu W, Rood S, Johnson C S 2012 Electrochem Commun 18 66Google Scholar

    [56]

    Linqin M, Xinguo Q, Yongsheng H, Hong L, Liquan C, Xuejie H J E S S 2016 Energy Storage Sci Techn 5 324Google Scholar

    [57]

    Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun C J, Wen J, Wang J, Miller D, Amine K, Ma Z 2016 Advan. Energy Mater. 6 1601306Google Scholar

    [58]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 ACS Appl. Mater. Interfaces 7 8585Google Scholar

    [59]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 Appl. Mater. Interfaces 7 8585

    [60]

    Maletti S, Sarapulova A, Schokel A, Mikhailova D 2019 ACS Appl. Mater. Interfaces 11 33923Google Scholar

    [61]

    Wang P F, Yao H R, Liu X Y, Zhang J N, Gu L, Yu X Q, Yin Y X, Guo Y G 2017 Advan. Mater. 29 1700210Google Scholar

    [62]

    Yao H R, Wang P F, Gong Y, Zhang J, Yu X, Gu L, OuYang C, Yin Y X, Hu E, Yang X-Q, Stavitski E, Guo Y, Wan L 2017 J. Am. Chem. Soc. 139 8440Google Scholar

    [63]

    Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F, Chakir M, Tarascon J M 2019 Advan. Energy Mater. 9 1901785Google Scholar

    [64]

    Mariyappan S, Marchandier T, Rabuel F, Iadecola A, Rousse G, Morozov A V, Abakumov A M, Tarascon J-M 2020 Chem. Mater. 32 1657Google Scholar

    [65]

    Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 J Mater Chem A 9 12830Google Scholar

    [66]

    Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B 2021 Energy Envir. Sci. 14 2883Google Scholar

    [67]

    Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, Biasi L, Kubel C, Brezesinski T, Bhattacharya S, Hahn H, Breitung B 2018 Nat. Commun. 9 3400Google Scholar

    [68]

    Zhao C, Ding F, Lu Y, Chen L, Hu Y S 2020 Angew. Chem. Int. Ed. Engl. 59 264Google Scholar

    [69]

    Ding F, Zhao C, Zhou D, Meng Q, Xiao D, Zhang Q, Niu Y, Li Y, Rong X, Lu Y, Chen L, Hu Y S 2020 Energy Storage Mater. 30 420

    [70]

    Zhou Q, Li Y Q, Tang F, Li K X, Rong X H, Lu Y X, Chen L Q, Hu Y S 2021 Chin. Phys. Lett. 38 076501Google Scholar

    [71]

    Gonzalo E, Han M H, López del Amo J M, Acebedo B, Casas-Cabanas M, Rojo T 2014 J. Mater. Chem. A 2 18523Google Scholar

    [72]

    Parant J P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P 1971 J. Solid State Chem. 3 1Google Scholar

    [73]

    Paulsen J M, Dahn J R 1999 Solid State Ionics 126 3Google Scholar

    [74]

    Liu X, Zhong G, Xiao Z, Zheng B, Zuo W, Zhou K, Liu H, Liang Z, Xiang Y, Chen Z, Ortiz G, Fu R, Yang Y 2020 Nano Energy 76 104997Google Scholar

    [75]

    Ding F, Meng Q, Yu P, Wang H, Niu Y, Li Y, Yang Y, Rong X, Liu X, Lu Y, Chen L, Hu Y S 2021 Adv. Funct. Mater. 31 2001120

    [76]

    Guo K S, Lu Y X, Wang H L, Ma X B, Li Z Y, Hu Y S, Dongfeng Chen 2019 Chin. Phys. B 28 68203Google Scholar

    [77]

    Fei Xie  Y L, Liquan Chen , Hu Y S 2021 Chin. Phys. Lett. 38 118401Google Scholar

    [78]

    Zhao C, Yao Z, Wang Q, Li H, Wang J, Liu M, Ganapathy S, Lu Y, Cabana J, Li B, Bai X, Aspuru-Guzik A, Wagemaker M, Chen L, Hu Y S 2020 J. Am. Chem. Soc. 142 5742Google Scholar

    [79]

    Liang X, Yu T Y, Ryu H H, Sun Y-K 2022 Energy Storage Mater. 47 515

  • [1] 周轩弛, 李海帆. 强关联电子相变氧化物材料及多场调控. 物理学报, 2024, 73(11): 117102. doi: 10.7498/aps.73.20240289
    [2] 冉沛林, 吴康, 赵恩岳, 王芳卫, 毋志民. 通过Mo掺杂诱导低Li/Ni混排程度增强Li1.2Ni0.13Fe0.13Mn0.54O2可逆容量与循环稳定性. 物理学报, 2024, 73(2): 028201. doi: 10.7498/aps.73.20231361
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能. 物理学报, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [5] 刘强, 倪尧, 刘璐, 孙林, 刘甲奇, 徐文涛. 基于层状多元金属氧化物的人造突触. 物理学报, 2022, 71(14): 148501. doi: 10.7498/aps.71.20220303
    [6] 陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究. 物理学报, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [7] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [8] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [9] 林传金, 郑锋, 朱梓忠. 锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散. 物理学报, 2019, 68(15): 157201. doi: 10.7498/aps.68.20190213
    [10] 孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合. 电场诱导二氧化钒绝缘-金属相变的研究进展. 物理学报, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [11] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [12] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [13] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [14] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [15] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [16] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [17] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响. 物理学报, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [18] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [19] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [20] 胡国进, 欧阳楚英. 表面效应对锂离子电池正极材料LiMn2O4性能的影响. 物理学报, 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
计量
  • 文章访问数:  23135
  • PDF下载量:  1105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-03-28
  • 上网日期:  2022-05-19
  • 刊出日期:  2022-05-20

/

返回文章
返回