搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振的暗通道先验去雾

霍永胜

引用本文:
Citation:

基于偏振的暗通道先验去雾

霍永胜

Polarization-based research on a priori defogging of dark channel

Huo Yong-Sheng
PDF
HTML
导出引用
  • 基于暗通道先验去雾的图像增质方法在目标探测中表现良好, 但其以光强信息为载体, 光学维度单一的不足导致其目标表征效能下降. 本文借助偏振对物理属性的敏感特性, 提出在传统暗通道先验去雾方法中引入偏振信息来增强不同物体之间的辨识程度. 研究了暗通道先验去雾方法中退散射与偏振探测的理论, 并搭建机械式偏振滤波成像设备在雾天环境对所提方法的目标表征功能进行了实验验证. 研究表明, 基于偏振的暗通道先验去雾方法能够同时获取物体的光强与偏振信息, 与传统暗通道先验去雾方法相比, 利用目标与背景的偏振差异能够明显地提高二者对比度. 此研究结果可应用于现有的偏振成像仪器系统, 实现退散射与偏振信息的实时提取, 进一步提高雾天目标探测与表征的效率.
    The image enhancement method based on dark channel priori defogging performs well in target detection, but it takes the light intensity information as the carrier and the single optical dimension leads the target characterization efficiency to decline. Based on the sensitivity of polarization to physical properties, in this paper a proposal is made that polarization information is introduced into the traditional dark channel priori defogging method to enhance the recognition degree between different objects. The theory of backscattering and polarization detection in dark channel priori defogging method is studied, and the mechanical polarization filtering imaging equipment is built to verify the target characterization function of the proposed method in foggy environment. The research shows that the dark channel priori defogging method based on polarization can obtain the light intensity and polarization information of the object at the same time. Compared with the traditional dark channel priori defogging method, using the polarization difference between the target and the background can significantly improve their contrast. This research result can be applied to the existing polarization imaging instrument system to realize real-time backscattering and polarization information extraction, and further improve the efficiency of target detection and characterization in fog.
      通信作者: 霍永胜, zbdx_hys@163.com
    • 基金项目: 国家自然科学基金(批准号: 11847069, 62005251)资助的课题
      Corresponding author: Huo Yong-Sheng, zbdx_hys@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11847069, 62005251) .
    [1]

    Yi W J, Liu H B, Wang P, Fu M C, Tan J C, Li X J 2017 Opt. Express 25 7392Google Scholar

    [2]

    Huang S S 2021 The 2020 International Symposium on Geographic Information, Energy and Environmental Sustainable Development Tianjin, China, December 26–27, 2020 p012083

    [3]

    宋强, 孙晓兵, 刘晓, 提汝芳, 黄红莲, 王昊 2021 物理学报 70 144201Google Scholar

    Song Q, Sun X B, Liu X, Ti R F, Huang H L, Wang H 2021 Acta Phys. Sin. 70 144201Google Scholar

    [4]

    Liu F L, Li G, Yang S Q, Yan W J, He G G, Lin L 2020 Appl. Spectrosc. 74 883Google Scholar

    [5]

    刘欣宇, 杨苏辉, 廖英琦, 林学彤 2021 物理学报 70 184205Google Scholar

    Liu X Y, Yang S H, Liao Y Q, Lin X T 2021 Acta Phys. Sin. 70 184205Google Scholar

    [6]

    Duan D Y, Zhu R, Xia Y J 2021 Opt. Lett. 46 4172Google Scholar

    [7]

    He K M, Sun J, Tang X O 2011 IEEE Trans. Pattern Anal. Mach. Intell. 33 2341Google Scholar

    [8]

    He K M, Sun J, Tang X O 2013 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397Google Scholar

    [9]

    Xu H R, Guo J M, Liu Q, Ye L L 2012 Proceedings of 2012 IEEE International Conference on Information Science and Technology Wuhan, China, March 23−25, 2012 p663

    [10]

    Zhang W, Dong L, Pan X, Zhou J, Qin J, Xu W 2019 IEEE Access 7 72492Google Scholar

    [11]

    Qu Y F, Zou Z F 2017 Opt. Express 25 25004Google Scholar

    [12]

    Liang J, Ren L Y, Qu E S, Hu B L, Wang Y L 2014 Photon. Res. 2 38Google Scholar

    [13]

    Fang S, Xia X S, Huo X, Chen C W 2014 Opt. Express 22 19523Google Scholar

    [14]

    Liang J, Ren L Y, Ju H J, Qu E S, Wang Y L 2014 J. Appl. Phys. 116 173107Google Scholar

    [15]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570Google Scholar

    [16]

    Jacques S L, Roussel S, Samatham R V 2016 J. Biomed. Opt. 21 071115Google Scholar

    [17]

    刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏 2021 物理学报 70 164201Google Scholar

    Liu F, Sun S J, Han P L, Zhao L, Shao X P 2021 Acta Phys. Sin. 70 164201Google Scholar

    [18]

    Schechner Y Y, Narasimhan S G, Nayar S K 2003 Appl. Opt. 42 511Google Scholar

    [19]

    Turner R N, Norris K S 1966 J. Exp. Anal. Behav. 9 535Google Scholar

    [20]

    Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar

    [21]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [22]

    王成, 范之国, 金海红, 汪先球, 华豆 2021 物理学报 70 104201Google Scholar

    Wang C, Fan Z G, Jin H H, Wang X Q, Hua D 2021 Acta Phys. Sin. 70 104201Google Scholar

    [23]

    Chen L X, Huang X G, Zhu J H, Li G C, Lan S 2011 Opt. Lett. 36 2761Google Scholar

    [24]

    McCartney E J 1977 Phys. Today 30 76

  • 图 1  大气物理退化模型示意图

    Fig. 1.  Schematic of atmospheric physical degradation model

    图 2  偏振轴标定系统 (a)原理图; (b)系统光路图 SL, 半导体激光器; A, 衰减片; PBS, 偏振型分光棱镜; PSA, 检偏器; PD, 光电探测器; L, 水平仪; OS, 示波器

    Fig. 2.  Polarization axis calibration system: (a) Schematic diagram; (b) system physical diagram: SL, semiconductor lasers; A, attenuator; PBS, polarization beam splitter cube; PSA, polarization state analyzer; PD, photodetector; L, leveler; OS, oscilloscope.

    图 3  雾天偏振成像系统 P, 处理器; G, 导轨; PSA, 检偏器; CCD, 工业相机; T, 三脚架

    Fig. 3.  Polarization imaging system in fog environment: P, processor; G, guideway; PSA, polarization state analyzer; CCD, CCD camera; T, tripod.

    图 4  光电压强度与偏转角间变换关系拟合曲线

    Fig. 4.  Fitted curve of transformation relationship between optical voltage intensity and deflection angle.

    图 5  暗通道像素强度分布规律

    Fig. 5.  The distribution pattern of pixel intensity in the dark channel.

    图 6  除雾前后各偏振通道图像 (a) 原始各偏振通道图像; (b) 去雾后各偏振通道图像

    Fig. 6.  Images of each polarization channel before and after defogging: (a) Original image of each polarization channel; (b) images of each polarization channel after defogging.

    图 7  不同目标对各偏振通道的接受程度

    Fig. 7.  Acceptance of each polarization channel by different targets.

    图 8  不同方案效果对比 (a) 原始场景图像; (b) 去雾后场景图像; (c) 偏振度图像

    Fig. 8.  Comparison of scheme effects: (a) Original scene image; (b) scene image after defogging; (c) image of polarization degree

    图 9  光强图像与偏振度图像的比较 (a) 原始场景灰度图像; (b)去雾后场景灰度图像; (c)偏振度灰度图像; (d) 不同方案的表征能力

    Fig. 9.  Comparison of light intensity image and polarization image: (a) Original scene grayscale image; (b) scene grayscale image after defogging; (c) polarization grayscale image; (d) characterization capabilities of different programs.

    图 10  不同色道偏振度图像 (a) C = 0.544; (b) C = 0.422; (c) C = 0.616; (d) C = 0.504

    Fig. 10.  Images of polarization degree at different color channels: (a) C = 0.544; (b) C = 0.422; (c) C = 0.616; (d) C = 0.504.

    表 1  不同区域的偏振信息记录

    Table 1.  Polarization information in different regions.

    偏振参量人造目标非人造目标
    123456
    s053.39156.46947.61530.45216.18712.582
    s10.0320.3340.1070.0050.0170.003
    s20.0540.1380.1070.0110.0300.012
    PL0.0630.3610.1520.0120.0350.012
    下载: 导出CSV

    表 2  不同人造目标与指定自然目标的对比度

    Table 2.  Contrast between different man-made objects and designated natural objects.

    区域原始图像先验去雾偏振先验去雾
    10.1420.3430.406
    20.0120.2990.424
    30.0100.2170.544
    下载: 导出CSV
  • [1]

    Yi W J, Liu H B, Wang P, Fu M C, Tan J C, Li X J 2017 Opt. Express 25 7392Google Scholar

    [2]

    Huang S S 2021 The 2020 International Symposium on Geographic Information, Energy and Environmental Sustainable Development Tianjin, China, December 26–27, 2020 p012083

    [3]

    宋强, 孙晓兵, 刘晓, 提汝芳, 黄红莲, 王昊 2021 物理学报 70 144201Google Scholar

    Song Q, Sun X B, Liu X, Ti R F, Huang H L, Wang H 2021 Acta Phys. Sin. 70 144201Google Scholar

    [4]

    Liu F L, Li G, Yang S Q, Yan W J, He G G, Lin L 2020 Appl. Spectrosc. 74 883Google Scholar

    [5]

    刘欣宇, 杨苏辉, 廖英琦, 林学彤 2021 物理学报 70 184205Google Scholar

    Liu X Y, Yang S H, Liao Y Q, Lin X T 2021 Acta Phys. Sin. 70 184205Google Scholar

    [6]

    Duan D Y, Zhu R, Xia Y J 2021 Opt. Lett. 46 4172Google Scholar

    [7]

    He K M, Sun J, Tang X O 2011 IEEE Trans. Pattern Anal. Mach. Intell. 33 2341Google Scholar

    [8]

    He K M, Sun J, Tang X O 2013 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397Google Scholar

    [9]

    Xu H R, Guo J M, Liu Q, Ye L L 2012 Proceedings of 2012 IEEE International Conference on Information Science and Technology Wuhan, China, March 23−25, 2012 p663

    [10]

    Zhang W, Dong L, Pan X, Zhou J, Qin J, Xu W 2019 IEEE Access 7 72492Google Scholar

    [11]

    Qu Y F, Zou Z F 2017 Opt. Express 25 25004Google Scholar

    [12]

    Liang J, Ren L Y, Qu E S, Hu B L, Wang Y L 2014 Photon. Res. 2 38Google Scholar

    [13]

    Fang S, Xia X S, Huo X, Chen C W 2014 Opt. Express 22 19523Google Scholar

    [14]

    Liang J, Ren L Y, Ju H J, Qu E S, Wang Y L 2014 J. Appl. Phys. 116 173107Google Scholar

    [15]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570Google Scholar

    [16]

    Jacques S L, Roussel S, Samatham R V 2016 J. Biomed. Opt. 21 071115Google Scholar

    [17]

    刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏 2021 物理学报 70 164201Google Scholar

    Liu F, Sun S J, Han P L, Zhao L, Shao X P 2021 Acta Phys. Sin. 70 164201Google Scholar

    [18]

    Schechner Y Y, Narasimhan S G, Nayar S K 2003 Appl. Opt. 42 511Google Scholar

    [19]

    Turner R N, Norris K S 1966 J. Exp. Anal. Behav. 9 535Google Scholar

    [20]

    Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar

    [21]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [22]

    王成, 范之国, 金海红, 汪先球, 华豆 2021 物理学报 70 104201Google Scholar

    Wang C, Fan Z G, Jin H H, Wang X Q, Hua D 2021 Acta Phys. Sin. 70 104201Google Scholar

    [23]

    Chen L X, Huang X G, Zhu J H, Li G C, Lan S 2011 Opt. Lett. 36 2761Google Scholar

    [24]

    McCartney E J 1977 Phys. Today 30 76

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术. 物理学报, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [3] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究. 物理学报, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [4] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [5] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [6] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [7] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [8] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [9] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [10] 郑东晖, 李金鹏, 陈磊, 朱文华, 韩志刚, 乌兰图雅, 郭仁慧. 空域移相偏振点衍射波前检测技术. 物理学报, 2016, 65(11): 114203. doi: 10.7498/aps.65.114203
    [11] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究. 物理学报, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [12] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [13] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [14] 马明磊, 吴坚, 杨沐, 宁永强, 商广义. 基于两端自发荧光辐射的808nm半导体激光器增益偏振特性实验表征和能带分析. 物理学报, 2013, 62(17): 174209. doi: 10.7498/aps.62.174209
    [15] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [16] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [17] 赵建领, 吴令安. 基于偏振叠加和干涉两种方法的可控光脉冲延时器. 物理学报, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
    [18] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [19] 郑国梁, 佘卫龙. 偏振方向对THz电光探测影响的理论研究. 物理学报, 2006, 55(3): 1061-1067. doi: 10.7498/aps.55.1061
    [20] 周国泉. 任意线偏振高斯光束的非傍轴传输. 物理学报, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
计量
  • 文章访问数:  6401
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-04-28
  • 上网日期:  2022-06-15
  • 刊出日期:  2022-07-20

/

返回文章
返回