-
极紫外(extreme ultraviolet, XUV)光与物质相互作用是探索微观粒子内部结构的重要方式. 本文利用反应显微成像谱仪测量了Ne, Xe原子在XUV光作用下单电离与双电离的电子角分布, 提取了Ne原子2p电子和Xe原子5p, 5s电子电离的β不对称参数, 并结合前人已发表的实验数据与不同的理论模型进行对比. 结果表明Ne原子2p壳层电子电离受电子关联效应影响较弱; Xe原子5p电子电离受电子关联效应影响强, 且不受相对论效应的影响, 但这两种效应在Xe原子5s电子电离过程中都发挥了重要作用. 此外, 研究还发现Xe原子双电离存在直接双电离和间接双电离两种机制, 并给出了间接双电离第一步与第二步光电子角分布与β不对称参数信息.The interaction of extreme ultraviolet (XUV) photon with matter is a meaningful way to understand the electronic structure of microscopic particles. In this paper, the electron angular distributions of single ionization and double ionization of Ne and Xe atoms interacting with XUV photons are investigated by utilizing a reaction microscope. The β-asymmetric parameters of 2p electrons of Ne atom, and 5p, 5s electrons of Xe atom combined with the reported experimental data are compared with those from different theoretical models. The result shows that the electron correlation effect can be ignored in the ionization of 2p electron of Ne atom. While the ionization of 5p electron of Xe atom is strongly influenced by the electron correlation effect, but not by the relativistic effect. These two effects play an important role in ionizing the 5s shell of Xe atom. In addition, this study finds that both direct double ionization and indirect double ionization exist simultaneously during the ionization of Xe atom, and gives the photoelectron angular distributions and the β-asymmetric parameters of the first step and the second step of indirect double ionization.
[1] Leuchs G 1984 Multiphoton Processes Berlin, Heidelberg, September 5−12, 1984 pp48−57
[2] L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503Google Scholar
[3] Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A 2000 Nature 405 658Google Scholar
[4] Imanaka H, Smith M A 2007 Geophys. Res. Lett. 34 L02204Google Scholar
[5] Hell N, Brown G V, Wilms J, Grinberg V, Clementson J, Liedahl D, Porter F S, Kelley R L, Kilbourne C A, Beiersdorfer P 2016 Astrophys. J. 830 26Google Scholar
[6] Cooper J W, Fano U, Prats F 1963 Phys. Rev. Lett. 10 518Google Scholar
[7] Madden R P, Codling K 1963 Phys. Rev. Lett. 10 516Google Scholar
[8] Wuilleumier F, Krause M O 1974 Phys. Rev. A 10 242Google Scholar
[9] Becker U, Langer B, Kerkhoff H G, Kupsch M, Szostak D, Wehlitz R, Heimann P A, Liu S H, Lindle D W, Ferrett T A, Shirley D A 1988 Phys. Rev. Lett. 60 1490Google Scholar
[10] Richter M, Bobashev S V, Sorokin A A, Tiedtke K 2010 J. Phys. B:At. Mol. Opt. Phys. 43 194005Google Scholar
[11] Bolognesi P, Cavanagh S J, Avaldi L, Camilloni R, Zitnik M, Stuhec M, King G C 2000 J. Phys. B:At. Mol. Opt. Phys. 33 4723Google Scholar
[12] Hall R I, Ellis K, Mcconkey A, Dawber G, Avaldi L, Macdonald M A, King G C 1992 J. Phys. B:At. Mol. Opt. Phys. 23 377Google Scholar
[13] Fano U, Cooper J W 1968 Rev. Mod. Phys. 40 441Google Scholar
[14] Wuilleumier F, Adam M Y, Dhez P, Sandner N, Schmidt V, Mehlhorn W 1977 Phys. Rev. A 16 646Google Scholar
[15] Johnson W R, Cheng K T 1978 Phys. Rev. Lett. 40 1167Google Scholar
[16] Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998 Rev. Sci. Instrum. 69 3809Google Scholar
[17] Schwarzkopf O, Krässig B, Elmiger J, Schmidt V 1993 Phys. Rev. Lett. 70 3008Google Scholar
[18] Ueda K, Shimizu Y, Chiba H, Kitajima M, Okamoto M, Hoshino M, Tanaka H, Hayaishi T, Fritzsche S, Sazhina I P, Kabachnik N M 2003 J. Phys. B: At. Mol. Opt. Phys. 36 319Google Scholar
[19] Dörner R, Vogt T, Mergel V, et al. 1996 Phys. Rev. Lett. 76 2654Google Scholar
[20] Czasch A, Schöffler M, Hattass M, et al. 2005 Phys. Rev. Lett. 95 243003Google Scholar
[21] Weber T, Weckenbrock M, Staudte A, Hattass M, Spielberger L, Jagutzki O, Mergel V, Böcking H S, Urbasch G, Giessen H, Bräuning H, Cocke C L, Prior M H, Dörner R 2001 Opt. Express 8 368Google Scholar
[22] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidtböcking H 2000 Phys. Rep. 330 95Google Scholar
[23] Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X 2020 Phys. Rev. A 101 052706Google Scholar
[24] Gagnon E, Sandhu A S, Paul A, Hagen K, Czasch A, Jahnke T, Ranitovic P, Lewis Cocke C, Walker B, Murnane M M, Kapteyn H C 2008 Rev. Sci. Instrum. 79 063102Google Scholar
[25] Wiley W C, Mclaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar
[26] Codling K, Houlgate R G, West J B, Woodruff P R 1976 J. Phys. B:At. Mol. Phys. 9 L83Google Scholar
[27] Dehmer J L, Chupka W A, Berkowitz J, Jivery W T 1975 Phys. Rev. A 12 1966Google Scholar
[28] Schmidt V 1986 Photoionization in Rare Gases with Synchrotron Radiation: Some Basic Aspects for Critical Tests with Theory (Vol. 2) pp275−283
[29] Amusia M Y, Cherepkov N A, Chernysheva L V 1972 Phys. Rev. A 40 15Google Scholar
[30] Lagutin B M, Petrov I D, Sukhorukov V L, Whitfield S B, Langer B, Viefhaus J, Wehlitz R, Berrah N, Mahler W, Becker U 1996 J. Phys. B:At. Mol. Opt. Phys. 29 937Google Scholar
[31] Samson J, Stolte W C 2002 J. Electron Spectrosc. Relat. Phenom. 123 265Google Scholar
[32] Qiao C K, Chi H C, Hsu M C, Zheng X G, Jiang G, Lin S T, Tang C J, Huang K N 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075001Google Scholar
[33] Fahlman A, Carlson T A, Krause M O 1983 Phys. Rev. Lett. 50 1114Google Scholar
[34] Samson J A R, Gardner J L 1974 Phys. Rev. Lett. 33 671Google Scholar
[35] Krause M O, Carlson T A, Woodruff P R 1981 Phys. Rev. A 24 1374Google Scholar
[36] Johnson W R, Cheng K T 1979 Phys. Rev. A 20 978Google Scholar
[37] Johnson W R, Cheng K T 2001 Phys. Rev. A 63 022504Google Scholar
[38] White M G, Southworth S H, Kobrin P, Poliakoff E D, Rosenberg R A, Shirley D A 1979 Phys. Rev. Lett. 43 1661Google Scholar
[39] Dehmer J L, Dill D 1976 Phys. Rev. Lett. 37 1049Google Scholar
[40] Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003Google Scholar
-
图 2 (a) Ne原子光电子的能谱; (b) 光电子动量在y-z平面内的二维动量分布图, 统计动量
$ \left|{P}_{x}\right| < 0.1 $ 的事件; (c) 2p电子的角分布; (d) 2p电子的β不对称参数随光子能量的变化关系Fig. 2. (a) Energy spectrum of the photoelectron from Ne; (b) density plots of the momentum distribution of the photoelectron on the y-z plane for events with transverse momentum
$ \left|{P}_{x}\right| < 0.1 $ ; (c) angular distribution of 2p electrons; (d) the β-asymmetric parameter for 2p photoionization as a function of the photon energy.图 5 (a) 在38.8 eV XUV光的作用下, Xe原子双电离对应的反应路径; (b) Xe原子单光子双电离的电子能谱; (c) 光电子能量在0−1.5 eV 内的电子角分布; (d) 5.5−7.0 eV 能量的光电子角分布
Fig. 5. (a) Typical routes to double ionization of Xe interacting with 38.8 eV XUV photon; (b) kinetic energy distribution of photoelectrons from double ionization of Xe; (c) angular distributions of the photoelectrons energy in the range of 0–1.5 eV; (d) angular distributions of the photoelectrons energy in the range of 5.5–7.0 eV.
表 1 Xe原子不同电子组态及结合能
Table 1. Different electronic configurations and binding energies of Xe atoms.
Xe+电子组态 总角动量J 能量/eV 能峰序号 5p5 P3/2 12.10 (1) P1/2 13.40 (2) 5s5p6 S1/2 23.30 (3) 5s25p4 (3P)6p 2D3/2 27.54 (4) 5s25p4 (3P)5d 2D5/2 5s25p4 (1D)5d 2P1/2 27.88 5s25p4 (1D)5d 2D3/2 27.97 5s25p4 (1S)6s 2S1/2 28.16 -
[1] Leuchs G 1984 Multiphoton Processes Berlin, Heidelberg, September 5−12, 1984 pp48−57
[2] L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503Google Scholar
[3] Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A 2000 Nature 405 658Google Scholar
[4] Imanaka H, Smith M A 2007 Geophys. Res. Lett. 34 L02204Google Scholar
[5] Hell N, Brown G V, Wilms J, Grinberg V, Clementson J, Liedahl D, Porter F S, Kelley R L, Kilbourne C A, Beiersdorfer P 2016 Astrophys. J. 830 26Google Scholar
[6] Cooper J W, Fano U, Prats F 1963 Phys. Rev. Lett. 10 518Google Scholar
[7] Madden R P, Codling K 1963 Phys. Rev. Lett. 10 516Google Scholar
[8] Wuilleumier F, Krause M O 1974 Phys. Rev. A 10 242Google Scholar
[9] Becker U, Langer B, Kerkhoff H G, Kupsch M, Szostak D, Wehlitz R, Heimann P A, Liu S H, Lindle D W, Ferrett T A, Shirley D A 1988 Phys. Rev. Lett. 60 1490Google Scholar
[10] Richter M, Bobashev S V, Sorokin A A, Tiedtke K 2010 J. Phys. B:At. Mol. Opt. Phys. 43 194005Google Scholar
[11] Bolognesi P, Cavanagh S J, Avaldi L, Camilloni R, Zitnik M, Stuhec M, King G C 2000 J. Phys. B:At. Mol. Opt. Phys. 33 4723Google Scholar
[12] Hall R I, Ellis K, Mcconkey A, Dawber G, Avaldi L, Macdonald M A, King G C 1992 J. Phys. B:At. Mol. Opt. Phys. 23 377Google Scholar
[13] Fano U, Cooper J W 1968 Rev. Mod. Phys. 40 441Google Scholar
[14] Wuilleumier F, Adam M Y, Dhez P, Sandner N, Schmidt V, Mehlhorn W 1977 Phys. Rev. A 16 646Google Scholar
[15] Johnson W R, Cheng K T 1978 Phys. Rev. Lett. 40 1167Google Scholar
[16] Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998 Rev. Sci. Instrum. 69 3809Google Scholar
[17] Schwarzkopf O, Krässig B, Elmiger J, Schmidt V 1993 Phys. Rev. Lett. 70 3008Google Scholar
[18] Ueda K, Shimizu Y, Chiba H, Kitajima M, Okamoto M, Hoshino M, Tanaka H, Hayaishi T, Fritzsche S, Sazhina I P, Kabachnik N M 2003 J. Phys. B: At. Mol. Opt. Phys. 36 319Google Scholar
[19] Dörner R, Vogt T, Mergel V, et al. 1996 Phys. Rev. Lett. 76 2654Google Scholar
[20] Czasch A, Schöffler M, Hattass M, et al. 2005 Phys. Rev. Lett. 95 243003Google Scholar
[21] Weber T, Weckenbrock M, Staudte A, Hattass M, Spielberger L, Jagutzki O, Mergel V, Böcking H S, Urbasch G, Giessen H, Bräuning H, Cocke C L, Prior M H, Dörner R 2001 Opt. Express 8 368Google Scholar
[22] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidtböcking H 2000 Phys. Rep. 330 95Google Scholar
[23] Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X 2020 Phys. Rev. A 101 052706Google Scholar
[24] Gagnon E, Sandhu A S, Paul A, Hagen K, Czasch A, Jahnke T, Ranitovic P, Lewis Cocke C, Walker B, Murnane M M, Kapteyn H C 2008 Rev. Sci. Instrum. 79 063102Google Scholar
[25] Wiley W C, Mclaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar
[26] Codling K, Houlgate R G, West J B, Woodruff P R 1976 J. Phys. B:At. Mol. Phys. 9 L83Google Scholar
[27] Dehmer J L, Chupka W A, Berkowitz J, Jivery W T 1975 Phys. Rev. A 12 1966Google Scholar
[28] Schmidt V 1986 Photoionization in Rare Gases with Synchrotron Radiation: Some Basic Aspects for Critical Tests with Theory (Vol. 2) pp275−283
[29] Amusia M Y, Cherepkov N A, Chernysheva L V 1972 Phys. Rev. A 40 15Google Scholar
[30] Lagutin B M, Petrov I D, Sukhorukov V L, Whitfield S B, Langer B, Viefhaus J, Wehlitz R, Berrah N, Mahler W, Becker U 1996 J. Phys. B:At. Mol. Opt. Phys. 29 937Google Scholar
[31] Samson J, Stolte W C 2002 J. Electron Spectrosc. Relat. Phenom. 123 265Google Scholar
[32] Qiao C K, Chi H C, Hsu M C, Zheng X G, Jiang G, Lin S T, Tang C J, Huang K N 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075001Google Scholar
[33] Fahlman A, Carlson T A, Krause M O 1983 Phys. Rev. Lett. 50 1114Google Scholar
[34] Samson J A R, Gardner J L 1974 Phys. Rev. Lett. 33 671Google Scholar
[35] Krause M O, Carlson T A, Woodruff P R 1981 Phys. Rev. A 24 1374Google Scholar
[36] Johnson W R, Cheng K T 1979 Phys. Rev. A 20 978Google Scholar
[37] Johnson W R, Cheng K T 2001 Phys. Rev. A 63 022504Google Scholar
[38] White M G, Southworth S H, Kobrin P, Poliakoff E D, Rosenberg R A, Shirley D A 1979 Phys. Rev. Lett. 43 1661Google Scholar
[39] Dehmer J L, Dill D 1976 Phys. Rev. Lett. 37 1049Google Scholar
[40] Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003Google Scholar
计量
- 文章访问数: 5494
- PDF下载量: 168
- 被引次数: 0