-
超导纳米线单光子探测器(SNSPD)因其优异的综合性能, 在量子信息、激光雷达等方面有广泛的应用. 通常, SNSPD工作在直流偏置下, 在时域上具有自由运行探测的优点. 而在卫星激光测距、单光子激光雷达等光信号到达时间有规律的应用场景中, 使用交流偏置有望提升器件运行速率、有效抑制背景暗计数, 却存在信号读出困难的棘手问题. 本文报道了自差分读出的交流偏置SNSPD系统, 该系统包含两根并行排布纳米线构成的2-pixel SNSPD器件. 给两根纳米线加载相同的100 MHz交流偏置信号, 并对两路输出信号差分使噪声信号相抵消, 实现光子响应信号的读出. 基于该方法测得, 响应信号的信噪比相比差分之前提升10倍, 在交流偏置下器件的暗计数降低至直流偏置下的约1/4, 计数率达到直流偏置下的约1.5倍. 本文为交流偏置SNSPD测试提供了一种思路, 为其应用提供参考数据.
-
关键词:
- 超导纳米线单光子探测器 /
- 交流偏置 /
- 自差分读出
Superconducting nanowire single photon detector (SNSPD) has been widely used in many fields such as quantum computing, quantum key distribution and laser radar, due to its high detection efficiency, low dark count rate, high counting rate, and low timing jitter. In most cases, the SNSPD works under the DC-bias mode that can detect single photons arrived at any time. In some cases such as satellite laser ranging and single-photon laser radar where the light pulses arrive regularly, the AC-bias mode enables the SNSPD to work with higher counting rates and lower background dark counts, which however requires complicated readout due to the low signal-to-noise ratio of the photon response. In this work, we report on an AC-biased SNSPD system with a self-differential readout circuit. The system includes a 2-pixel SNSPD consisting of two parallel nanowires, which are biased with 100 MHz sinusoidal current. The output signals of these two nanowires are amplified and combined for the differential readout of the photon response. The resulting response pulse possesses a signal-to-noise ratio ten times higher than that extracted before self-differential readout. In addition, the dark counts are reduced by a factor of 4, and the count rates are increased by a factor of 1.5, in comparison with those under the DC-bias mode. This work provides a specific method to read out the AC-biased SNSPD.[1] Chang J, Los J, Tenorio-Pearl J O, Noordzij N, Zadeh I E 2021 APL Photonics 6 036114Google Scholar
[2] Zhang C, Zhang W, You L, Huang J, Li H, Sun X, Wang H, Lv C, Zhou H, Liu X 2019 IEEE Photon. J. 11 7103008Google Scholar
[3] Zadeh I E, Los J W, Gourgues R, Bulgarini G, Dobrovolskiy S M, Zwiller V, Dorenbos S N 2018 arXiv: 1801.06574 [physics. ins-det]
[4] Zadeh I E, Los J W, Gourgues R, Jin C, Dorenbos S N 2020 ACS Photonics 7 1780Google Scholar
[5] Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M 2020 Nat. Photonics 14 250Google Scholar
[6] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H 2021 Nat. Photonics 15 570Google Scholar
[7] Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129Google Scholar
[8] Zhou H, He Y, You L, Chen S, Zhang W, Wu J, Wang Z, Xie X 2015 Opt. Express 23 14603Google Scholar
[9] Gerrits T, Allman S, Lum D J, Verma V, Howell J, Mirin R, Nam S W 2015 CLEO: Science and Innovations San Jose, California, United States, May 10–15, 2015 pSTh3O.6
[10] Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535Google Scholar
[11] Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848Google Scholar
[12] 尤立星, 陈思井, 王永良, 刘登宽, 谢晓明, 江绵恒 2013 中国专利 CN 103245424A
You L X, Chen S J, Wang Y L, Liu D K, Xie X M, Jiang M H 2013 China Patent CN 103245424A (in Chinese)
[13] 尹合钰, 成日盛, 徐正, 蔡涵, 蒋振南, 李铁夫, 刘建设, 陈炜 2013 微纳电子技术 50 683Google Scholar
Yin H Y, Cheng R S, Xu Z, Cai H, Jiang Z N, Li T F, Liu J S, Chen W 2013 Micronanoelectron. Technol. 50 683Google Scholar
[14] 赵清源 2014 博士学位论文 (南京: 南京大学)
Zhao Q Y 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[15] Zhang L B, Zhang S, Tao X, Zhu G H, Kang L, Chen J, Wu P H 2017 IEEE Trans. Appl. Supercon. 27 2201206Google Scholar
[16] Liu F, Jiang M S, Lu Y F, Wang Y, Bao W S 2021 Chin. Phys. B 30 040302Google Scholar
[17] Ravindran P, Cheng R, Tang H, Bardin J C 2020 Opt. Express 28 4099Google Scholar
[18] Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar
[19] Doerner S, Kuzmin A, Wuensch S, Charaev I, Siegel M 2016 IEEE T. Appl. Supercon. 27 2200205Google Scholar
[20] Doerner S, Kuzmin A, Wuensch S, Charaev I, Boes F, Zwick T, Siegel M 2017 Appl. Phys. Lett. 111 032603Google Scholar
[21] Doerner S, Kuzmin A, Wuensch S, Siegel M 2019 IEEE Trans. Appl. Supercon. 29 2200404Google Scholar
[22] Dauler E A, Grein M E, Kerman A J, Marsili F, Miki S, Nam S W, Shaw M D, Terai H, Verma V B, Yamashita T 2014 Opt. Eng. 53 081907Google Scholar
[23] Hu P, Li H, You L Y, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar
[24] You L X, Li H, Zhang W J, Yang X Y, Zhang L, Chen S J, Zhou H, Wang Z, Xie X M 2017 Supercond. Sci. Tech. 30 084008Google Scholar
[25] Zhang W J, Yang X Y, Li H, You L X, Lv C L, Zhang L, Zhang C J, Liu X Y, Wang Z, Xie X M 2018 Supercond. Sci. Tech. 31 035012Google Scholar
-
图 6 (a) 直流偏置以及100 MHz正弦偏置下, 不同入射光强下的系统探测效率随归一化偏置电流变化曲线, 图例为偏置方式-入射光子强度; (b) 直流偏置和100 MHz正弦偏置下的暗计数曲线
Fig. 6. (a) SDE curves as a function of normalized bias function in AC-bias mode and DC-bias mode under different photon intensity. In the legend is bias mode-photon intensity; (b) dark count rate (DCR) curves in AC-Bias mode and DC-Bias mode.
-
[1] Chang J, Los J, Tenorio-Pearl J O, Noordzij N, Zadeh I E 2021 APL Photonics 6 036114Google Scholar
[2] Zhang C, Zhang W, You L, Huang J, Li H, Sun X, Wang H, Lv C, Zhou H, Liu X 2019 IEEE Photon. J. 11 7103008Google Scholar
[3] Zadeh I E, Los J W, Gourgues R, Bulgarini G, Dobrovolskiy S M, Zwiller V, Dorenbos S N 2018 arXiv: 1801.06574 [physics. ins-det]
[4] Zadeh I E, Los J W, Gourgues R, Jin C, Dorenbos S N 2020 ACS Photonics 7 1780Google Scholar
[5] Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M 2020 Nat. Photonics 14 250Google Scholar
[6] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H 2021 Nat. Photonics 15 570Google Scholar
[7] Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129Google Scholar
[8] Zhou H, He Y, You L, Chen S, Zhang W, Wu J, Wang Z, Xie X 2015 Opt. Express 23 14603Google Scholar
[9] Gerrits T, Allman S, Lum D J, Verma V, Howell J, Mirin R, Nam S W 2015 CLEO: Science and Innovations San Jose, California, United States, May 10–15, 2015 pSTh3O.6
[10] Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535Google Scholar
[11] Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848Google Scholar
[12] 尤立星, 陈思井, 王永良, 刘登宽, 谢晓明, 江绵恒 2013 中国专利 CN 103245424A
You L X, Chen S J, Wang Y L, Liu D K, Xie X M, Jiang M H 2013 China Patent CN 103245424A (in Chinese)
[13] 尹合钰, 成日盛, 徐正, 蔡涵, 蒋振南, 李铁夫, 刘建设, 陈炜 2013 微纳电子技术 50 683Google Scholar
Yin H Y, Cheng R S, Xu Z, Cai H, Jiang Z N, Li T F, Liu J S, Chen W 2013 Micronanoelectron. Technol. 50 683Google Scholar
[14] 赵清源 2014 博士学位论文 (南京: 南京大学)
Zhao Q Y 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[15] Zhang L B, Zhang S, Tao X, Zhu G H, Kang L, Chen J, Wu P H 2017 IEEE Trans. Appl. Supercon. 27 2201206Google Scholar
[16] Liu F, Jiang M S, Lu Y F, Wang Y, Bao W S 2021 Chin. Phys. B 30 040302Google Scholar
[17] Ravindran P, Cheng R, Tang H, Bardin J C 2020 Opt. Express 28 4099Google Scholar
[18] Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar
[19] Doerner S, Kuzmin A, Wuensch S, Charaev I, Siegel M 2016 IEEE T. Appl. Supercon. 27 2200205Google Scholar
[20] Doerner S, Kuzmin A, Wuensch S, Charaev I, Boes F, Zwick T, Siegel M 2017 Appl. Phys. Lett. 111 032603Google Scholar
[21] Doerner S, Kuzmin A, Wuensch S, Siegel M 2019 IEEE Trans. Appl. Supercon. 29 2200404Google Scholar
[22] Dauler E A, Grein M E, Kerman A J, Marsili F, Miki S, Nam S W, Shaw M D, Terai H, Verma V B, Yamashita T 2014 Opt. Eng. 53 081907Google Scholar
[23] Hu P, Li H, You L Y, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar
[24] You L X, Li H, Zhang W J, Yang X Y, Zhang L, Chen S J, Zhou H, Wang Z, Xie X M 2017 Supercond. Sci. Tech. 30 084008Google Scholar
[25] Zhang W J, Yang X Y, Li H, You L X, Lv C L, Zhang L, Zhang C J, Liu X Y, Wang Z, Xie X M 2018 Supercond. Sci. Tech. 31 035012Google Scholar
计量
- 文章访问数: 4308
- PDF下载量: 108
- 被引次数: 0