搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自差分交流偏置超导纳米线单光子探测器

马璐瑶 张兴雨 舒志运 肖游 张天柱 李浩 尤立星

引用本文:
Citation:

自差分交流偏置超导纳米线单光子探测器

马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星

Superconducting nanowire single photon detector under AC-bias with self-differential readout

Ma Lu-Yao, Zhang Xing-Yu, Shu Zhi-Yun, Xiao You, Zhang Tian-Zhu, Li Hao, You Li-Xing
PDF
HTML
导出引用
  • 超导纳米线单光子探测器(SNSPD)因其优异的综合性能, 在量子信息、激光雷达等方面有广泛的应用. 通常, SNSPD工作在直流偏置下, 在时域上具有自由运行探测的优点. 而在卫星激光测距、单光子激光雷达等光信号到达时间有规律的应用场景中, 使用交流偏置有望提升器件运行速率、有效抑制背景暗计数, 却存在信号读出困难的棘手问题. 本文报道了自差分读出的交流偏置SNSPD系统, 该系统包含两根并行排布纳米线构成的2-pixel SNSPD器件. 给两根纳米线加载相同的100 MHz交流偏置信号, 并对两路输出信号差分使噪声信号相抵消, 实现光子响应信号的读出. 基于该方法测得, 响应信号的信噪比相比差分之前提升10倍, 在交流偏置下器件的暗计数降低至直流偏置下的约1/4, 计数率达到直流偏置下的约1.5倍. 本文为交流偏置SNSPD测试提供了一种思路, 为其应用提供参考数据.
    Superconducting nanowire single photon detector (SNSPD) has been widely used in many fields such as quantum computing, quantum key distribution and laser radar, due to its high detection efficiency, low dark count rate, high counting rate, and low timing jitter. In most cases, the SNSPD works under the DC-bias mode that can detect single photons arrived at any time. In some cases such as satellite laser ranging and single-photon laser radar where the light pulses arrive regularly, the AC-bias mode enables the SNSPD to work with higher counting rates and lower background dark counts, which however requires complicated readout due to the low signal-to-noise ratio of the photon response. In this work, we report on an AC-biased SNSPD system with a self-differential readout circuit. The system includes a 2-pixel SNSPD consisting of two parallel nanowires, which are biased with 100 MHz sinusoidal current. The output signals of these two nanowires are amplified and combined for the differential readout of the photon response. The resulting response pulse possesses a signal-to-noise ratio ten times higher than that extracted before self-differential readout. In addition, the dark counts are reduced by a factor of 4, and the count rates are increased by a factor of 1.5, in comparison with those under the DC-bias mode. This work provides a specific method to read out the AC-biased SNSPD.
      通信作者: 李浩, lihao@mail.sim.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61971408, 61827823)、国家重点研发计划(批准号: 2017YFA0304000)、上海市市级科技重大专项(批准号: 2019SHZDZX01)、上海市青年科技启明星项目(批准号: 20QA1410900)、中国科学院青年创新促进会项目(批准号: 2020241)和浙江省级重点研发计划(批准号: 2021C01188)资助的课题.
      Corresponding author: Li Hao, lihao@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971408, 61827823), the National Key R&D Program of China (Grant No. 2017YFA0304000), the Science and Technology Major Project of Shanghai, China (Grant No. 2019SHZDZX01), the Shanghai Rising-Star Program, China (Grant No. 20QA1410900), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020241), and the Zhejiang Key R&D Program, China (Grant No. 2021C01188).
    [1]

    Chang J, Los J, Tenorio-Pearl J O, Noordzij N, Zadeh I E 2021 APL Photonics 6 036114Google Scholar

    [2]

    Zhang C, Zhang W, You L, Huang J, Li H, Sun X, Wang H, Lv C, Zhou H, Liu X 2019 IEEE Photon. J. 11 7103008Google Scholar

    [3]

    Zadeh I E, Los J W, Gourgues R, Bulgarini G, Dobrovolskiy S M, Zwiller V, Dorenbos S N 2018 arXiv: 1801.06574 [physics. ins-det]

    [4]

    Zadeh I E, Los J W, Gourgues R, Jin C, Dorenbos S N 2020 ACS Photonics 7 1780Google Scholar

    [5]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M 2020 Nat. Photonics 14 250Google Scholar

    [6]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H 2021 Nat. Photonics 15 570Google Scholar

    [7]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129Google Scholar

    [8]

    Zhou H, He Y, You L, Chen S, Zhang W, Wu J, Wang Z, Xie X 2015 Opt. Express 23 14603Google Scholar

    [9]

    Gerrits T, Allman S, Lum D J, Verma V, Howell J, Mirin R, Nam S W 2015 CLEO: Science and Innovations San Jose, California, United States, May 10–15, 2015 pSTh3O.6

    [10]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535Google Scholar

    [11]

    Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848Google Scholar

    [12]

    尤立星, 陈思井, 王永良, 刘登宽, 谢晓明, 江绵恒 2013 中国专利 CN 103245424A

    You L X, Chen S J, Wang Y L, Liu D K, Xie X M, Jiang M H 2013 China Patent CN 103245424A (in Chinese)

    [13]

    尹合钰, 成日盛, 徐正, 蔡涵, 蒋振南, 李铁夫, 刘建设, 陈炜 2013 微纳电子技术 50 683Google Scholar

    Yin H Y, Cheng R S, Xu Z, Cai H, Jiang Z N, Li T F, Liu J S, Chen W 2013 Micronanoelectron. Technol. 50 683Google Scholar

    [14]

    赵清源 2014 博士学位论文 (南京: 南京大学)

    Zhao Q Y 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [15]

    Zhang L B, Zhang S, Tao X, Zhu G H, Kang L, Chen J, Wu P H 2017 IEEE Trans. Appl. Supercon. 27 2201206Google Scholar

    [16]

    Liu F, Jiang M S, Lu Y F, Wang Y, Bao W S 2021 Chin. Phys. B 30 040302Google Scholar

    [17]

    Ravindran P, Cheng R, Tang H, Bardin J C 2020 Opt. Express 28 4099Google Scholar

    [18]

    Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar

    [19]

    Doerner S, Kuzmin A, Wuensch S, Charaev I, Siegel M 2016 IEEE T. Appl. Supercon. 27 2200205Google Scholar

    [20]

    Doerner S, Kuzmin A, Wuensch S, Charaev I, Boes F, Zwick T, Siegel M 2017 Appl. Phys. Lett. 111 032603Google Scholar

    [21]

    Doerner S, Kuzmin A, Wuensch S, Siegel M 2019 IEEE Trans. Appl. Supercon. 29 2200404Google Scholar

    [22]

    Dauler E A, Grein M E, Kerman A J, Marsili F, Miki S, Nam S W, Shaw M D, Terai H, Verma V B, Yamashita T 2014 Opt. Eng. 53 081907Google Scholar

    [23]

    Hu P, Li H, You L Y, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [24]

    You L X, Li H, Zhang W J, Yang X Y, Zhang L, Chen S J, Zhou H, Wang Z, Xie X M 2017 Supercond. Sci. Tech. 30 084008Google Scholar

    [25]

    Zhang W J, Yang X Y, Li H, You L X, Lv C L, Zhang L, Zhang C J, Liu X Y, Wang Z, Xie X M 2018 Supercond. Sci. Tech. 31 035012Google Scholar

  • 图 1  (a) 2-pixel SNSPD横截面示意图, a和b分别代表nanowire-1和nanowire-2; (b) 2-pixel SNSPD结构示意图; (c) 2-pixel SNSPD SEM照片

    Fig. 1.  (a) Cross section of 2-pixel SNSPD, where a and b represent nanowire-1 and nanowire-2; (b) schematic of 2-pixel SNSPD; (c) SEM image of 2-pixel SNSPD.

    图 2  (a) 2.2 K温度下, nanowire-1与nanowire-2的I-V曲线; (b)光子强度为1 MHz情况下, 直流偏置下nanowire-1 与 nanowire-2的效率曲线

    Fig. 2.  (a) I-V curves of nanowire-1 and nanowire-2 at 2.2 K; (b) system detection efficiency (SDE) curves of nanowire-1 and nanowire-2 in DC-Bias mode under photon intensity of 1 MHz.

    图 3  光电同步自差分测试系统

    Fig. 3.  Self-differential testing system with synchronized laser and bias current pulses.

    图 4  (a) 自差分降噪前的响应波形; (b) 与(a)信号相差分的噪声波形; (c) 两信号合路、噪声相互抵消后的响应信号

    Fig. 4.  (a) Waveform of output signal before self-differential noise reduction; (b) waveform of the reference signal; (c) waveform of output signal after self-differential noise reduction.

    图 5  100 MHz正弦电流偏置下, 不同输入光子强度时光子计数随光脉冲与偏置电流之间的相位差变化的情况

    Fig. 5.  Variation of the photon counts with the change of phase difference under different photon intensity and 100 MHz sinusoidal bias current.

    图 6  (a) 直流偏置以及100 MHz正弦偏置下, 不同入射光强下的系统探测效率随归一化偏置电流变化曲线, 图例为偏置方式-入射光子强度; (b) 直流偏置和100 MHz正弦偏置下的暗计数曲线

    Fig. 6.  (a) SDE curves as a function of normalized bias function in AC-bias mode and DC-bias mode under different photon intensity. In the legend is bias mode-photon intensity; (b) dark count rate (DCR) curves in AC-Bias mode and DC-Bias mode.

  • [1]

    Chang J, Los J, Tenorio-Pearl J O, Noordzij N, Zadeh I E 2021 APL Photonics 6 036114Google Scholar

    [2]

    Zhang C, Zhang W, You L, Huang J, Li H, Sun X, Wang H, Lv C, Zhou H, Liu X 2019 IEEE Photon. J. 11 7103008Google Scholar

    [3]

    Zadeh I E, Los J W, Gourgues R, Bulgarini G, Dobrovolskiy S M, Zwiller V, Dorenbos S N 2018 arXiv: 1801.06574 [physics. ins-det]

    [4]

    Zadeh I E, Los J W, Gourgues R, Jin C, Dorenbos S N 2020 ACS Photonics 7 1780Google Scholar

    [5]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M 2020 Nat. Photonics 14 250Google Scholar

    [6]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H 2021 Nat. Photonics 15 570Google Scholar

    [7]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129Google Scholar

    [8]

    Zhou H, He Y, You L, Chen S, Zhang W, Wu J, Wang Z, Xie X 2015 Opt. Express 23 14603Google Scholar

    [9]

    Gerrits T, Allman S, Lum D J, Verma V, Howell J, Mirin R, Nam S W 2015 CLEO: Science and Innovations San Jose, California, United States, May 10–15, 2015 pSTh3O.6

    [10]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535Google Scholar

    [11]

    Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848Google Scholar

    [12]

    尤立星, 陈思井, 王永良, 刘登宽, 谢晓明, 江绵恒 2013 中国专利 CN 103245424A

    You L X, Chen S J, Wang Y L, Liu D K, Xie X M, Jiang M H 2013 China Patent CN 103245424A (in Chinese)

    [13]

    尹合钰, 成日盛, 徐正, 蔡涵, 蒋振南, 李铁夫, 刘建设, 陈炜 2013 微纳电子技术 50 683Google Scholar

    Yin H Y, Cheng R S, Xu Z, Cai H, Jiang Z N, Li T F, Liu J S, Chen W 2013 Micronanoelectron. Technol. 50 683Google Scholar

    [14]

    赵清源 2014 博士学位论文 (南京: 南京大学)

    Zhao Q Y 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [15]

    Zhang L B, Zhang S, Tao X, Zhu G H, Kang L, Chen J, Wu P H 2017 IEEE Trans. Appl. Supercon. 27 2201206Google Scholar

    [16]

    Liu F, Jiang M S, Lu Y F, Wang Y, Bao W S 2021 Chin. Phys. B 30 040302Google Scholar

    [17]

    Ravindran P, Cheng R, Tang H, Bardin J C 2020 Opt. Express 28 4099Google Scholar

    [18]

    Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar

    [19]

    Doerner S, Kuzmin A, Wuensch S, Charaev I, Siegel M 2016 IEEE T. Appl. Supercon. 27 2200205Google Scholar

    [20]

    Doerner S, Kuzmin A, Wuensch S, Charaev I, Boes F, Zwick T, Siegel M 2017 Appl. Phys. Lett. 111 032603Google Scholar

    [21]

    Doerner S, Kuzmin A, Wuensch S, Siegel M 2019 IEEE Trans. Appl. Supercon. 29 2200404Google Scholar

    [22]

    Dauler E A, Grein M E, Kerman A J, Marsili F, Miki S, Nam S W, Shaw M D, Terai H, Verma V B, Yamashita T 2014 Opt. Eng. 53 081907Google Scholar

    [23]

    Hu P, Li H, You L Y, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [24]

    You L X, Li H, Zhang W J, Yang X Y, Zhang L, Chen S J, Zhou H, Wang Z, Xie X M 2017 Supercond. Sci. Tech. 30 084008Google Scholar

    [25]

    Zhang W J, Yang X Y, Li H, You L X, Lv C L, Zhang L, Zhang C J, Liu X Y, Wang Z, Xie X M 2018 Supercond. Sci. Tech. 31 035012Google Scholar

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [3] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [4] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器. 物理学报, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [5] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [7] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [8] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器. 物理学报, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [9] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展. 物理学报, 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [10] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [11] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红. 二维多丝室探测器读出方法的优化. 物理学报, 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [12] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [13] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [14] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究. 物理学报, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [15] 袁红辉, 陈永平. 非制冷红外探测器读出电路的非均匀性研究. 物理学报, 2015, 64(11): 118503. doi: 10.7498/aps.64.118503
    [16] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [17] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [18] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [19] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] 叶高翔, 许宇庆, 王劲松, 张其瑞. 无规分形衬底上银膜逾渗系统的交流特性. 物理学报, 1994, 43(4): 651-654. doi: 10.7498/aps.43.651
计量
  • 文章访问数:  2574
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 修回日期:  2022-03-25
  • 上网日期:  2022-07-19
  • 刊出日期:  2022-08-05

/

返回文章
返回