搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn3As2掺杂Cd3As2纳米结构的制备及热电性能

陈上峰 孙乃坤 张宪民 王凯 李武 韩艳 吴丽君 岱钦

引用本文:
Citation:

Mn3As2掺杂Cd3As2纳米结构的制备及热电性能

陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦

Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures

Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin
PDF
HTML
导出引用
  • Cd3As2具有高电子迁移率、相对较低的热导率及良好的空气稳定性, 有望应用于热电领域. 本文首先采用高气压烧结技术抑制As元素挥发, 合成了(Cd1–xMnx)3As2 (x = 0, 0.05, 0.1)母合金, 然后通过化学气相沉积蒸发母合金粉末在云母基底上制备了Mn3As2掺杂的多种Cd3As2纳米结构(高温区形成竹笋纳米线结构, 低温区形成薄膜). 系统研究了掺杂对相组成、元素含量、微结构及热电性能的影响. 所有纳米结构的主相均为α相, 并伴有少量α'相, Mn3As2掺杂导致样品中出现α''相和Mn2As杂相. 电子能谱分析表明这些纳米结构中Mn的实际原子百分比约为0.02%—0.18%. 掺杂使薄膜的微观形貌从自组装菜花结构转变为贝壳结构, 并使纳米线直径显著减小. 与薄膜相比, 竹笋纳米线结构的室温电导率提高一个数量级, 达到247—320 S/cm, 这归因于更好的结晶质量和竹笋之间的纳米线相互连接形成了高导电网络, 导致更高的载流子浓度和迁移率. 竹笋纳米线结构的最大室温功率因子为0.144 mW/(m·K2), 是薄膜样品的14倍.
    Cd3As2, especially its various nanostructures, has been considered as an excellent candidate for application in novel optoelectronic devices due to its ultrahigh mobility and good air-stability. Recent researches exhibited Cd3As2 as a candidate of thermoelectric materials by virtue of its ultralow thermal conductivity in comparison with other semimetals or metals. In this work, at first ( Cd1–xMnx)3As2 (x = 0, 0.05, 0.1) bulk alloys are prepared by high-pressure sintering to suppress the volatilization of As element, and then several kinds of Mn3As2-doped Cd3As2 nanostructures are obtained on mica substrates by chemical vapor deposition (CVD), with bamboo-shoot-nanowire structure forming in a high-temperature region and films in a low-temperature region. Effects of Mn3As2 doping on the crystalline structure, phase compositions, microstructures and thermoelectric properties of the Cd3As2 nanostructures are systematically studied. Energy-dispersive spectrometer (EDS) analysis at various typical positions of the Mn3As2-doped Cd3As2 nanostructures shows that the Mn content in these nanostructures is in a range of 0.02%–0.18% (atomic percent), which is much lower than the Mn content in ( Cd1–xMnx)3As2 (x = 0, 0.05, 0.1) parent alloys. The main phases of these nanostructures are all body centered tetragonal α phase with a small amount of primitive tetragonal α′ phase. Doping results in the α″ phase and Mn2As impurity phase occurring. The Cd3As2 film presents a self-assembled cauliflower microstructure. Upon Mn3As2 doping, this morphology finally transforms into a vertical-growth seashell structure. In a high temperature region of the mica substrate, a unique bamboo-shoot-nanowire structure is formed, with vertical-growth bamboo shoots connected by nanowires, and at the end of these nanowires grows a white pentagonal flower structure with the highest Mn content of 0.18% (atomic percent) for all the nanostructures. Conductivity of the Cd3As2 film and the bamboo-shoot-nanowire structure are ~20 and 320 S/cm, respectively. The remarkable conductivity enhancement can be attributed to higher crystallinity and the formation of nanowire conductive network, which significantly increase carrier concentration and Hall mobility. The Hall mobility values of the nanowire structures range from 2271 to 3048 cm2/(V·s) much higher than the values of 378–450 cm2/(V·s) for the films. The Seebeck coefficient for the bamboo-shoot-nanowire structure is in a range of 59–68 µV/K, which is about 15% higher than those for the films (50–61 µV/K). Although maximal power factor of the bamboo-shoot-nanowire structure is 14 times as high as that of the thin film, reaching 0.144 mW/(m·K2) at room temperature, this value is still one order of magnitude lower than the previously reported value of 1.58 mW/(m·K2) for Cd3As2 single crystal.
      通信作者: 孙乃坤, naikunsun@163.com ; 吴丽君, wulijun20070915@163.com
    • 基金项目: 国家自然科学基金(批准号: 52171187)和沈阳理工大学高水平成果建设资助计划(批准号: SYLUXM202107)资助的课题.
      Corresponding author: Sun Nai-Kun, naikunsun@163.com ; Wu Li-Jun, wulijun20070915@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52171187) and the Shenyang Ligong University High-level Results-based Development Funding Program, China (Grant No. SYLUXM202107).
    [1]

    Kaleem U, Meng Y F, Sun Y, et al. 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [2]

    Wang H L, Ma J L, Wei Q Q, Zhao J H 2020 J. Semicond. 41 072903Google Scholar

    [3]

    Zhang Y X, Nappini S, Sankar R, Bondino F, Gao J F, Politano A 2021 J. Mater. Chem. C 9 1235Google Scholar

    [4]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [5]

    Cheng P H, Zhang C, Liu Y W, et al. 2016 New J. Phys. 18 083003Google Scholar

    [6]

    Park K, Jung M, Kim D, Bayogan J R, Lee J H, An S J, Seo J, Seo J, Ahn J P, Park J 2020 Nano Lett. 20 4939Google Scholar

    [7]

    Suslov A V, Davydov A B, Oveshnikov L N, et al. 2019 Phys. Rev. B 99 094512Google Scholar

    [8]

    Zhou T, Zhang C, Zhang H S, Xiu F X, Yang Z Q 2016 Inorg. Chem. Front. 3 1637Google Scholar

    [9]

    Zhang C, Zhou T, Liang S H, et al. 2016 Chin. Phys. B 25 017202Google Scholar

    [10]

    Wang H H, Luo X G, Peng K L, et al. 2019 Adv. Funct. Mater. 29 1902437Google Scholar

    [11]

    Pariari A, Khan N, Singha R, Satpati B, Mandal P 2016 Phys. Rev. B 94 165139Google Scholar

    [12]

    杨亮亮, 勤源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东 2021 物理学报 70 076802Google Scholar

    Yang L L, Qin Y H, Wei J T, Song P S, Zhang M L, Yang F H, Wang X D 2021 Acta Phys. Sin. 70 076802Google Scholar

    [13]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 物理学报 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [14]

    Sun N K, Li W, Pang C, Zhong D H, Li M L 2021 Solid State Commun. 339 114505Google Scholar

    [15]

    Liao W W, Yang L, Chen J, et al. 2019 Chem. Eng. J. 371 593Google Scholar

    [16]

    Yue Z M, Zhao K P, Chen H Y, Qiu P F, Zhao L D, Shi X 2021 Chin. Phys. Lett. 38 117201Google Scholar

    [17]

    胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健 2022 物理学报 71 047101Google Scholar

    Hu W W, Sun J C, Zhang Y, Guo Y, Fan Y T, Tang X F, Tan G J 2022 Acta Phys. Sin. 71 047101Google Scholar

    [18]

    Chen R K, Lee J, Lee W, Li D Y 2019 Chem. Rev. 119 9260Google Scholar

    [19]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [20]

    Guo J, Zhao X G, Sun N K, Xiao X F, Liu W, Zhang Z D 2021 J. Mater. Sci. Technol. 76 247Google Scholar

    [21]

    Celinski Z, Burian A, Rzepa B, Zdanowicz W 1987 Mat. Res. Bull. 22 419Google Scholar

    [22]

    Ril A I, Marenkin S F, Volkov V V, Oveshnikov L N, Kozlov V V 2021 J. Alloys Compd. 892 162082

    [23]

    Oveshnikov L N, Davydov A B, Suslov A V, Ril A I, Marenkin S F, Vasiliev A L, Aronzon B A 2020 Sci. Rep. 10 4601Google Scholar

    [24]

    Wei S, Lu J, Yu W C, Zhang H B, Qian Y T 2006 Cryst. Growth Des. 6 849Google Scholar

    [25]

    Weszka J 1999 Phys. Stat. Sol. (b) 211 605Google Scholar

    [26]

    Davydov A B, Oveshnikov L N, SuSlov A V, Ril A I, Marenkin S F, Aronzon B A 2020 Phys. Solid State 62 419Google Scholar

    [27]

    Marenkin S F, Trukhan V M, Fedorchenko I V, TruKhanov S V, Shoukavaya T V 2014 Russ. J. Inorg. Chem. 59 355Google Scholar

    [28]

    Li C Z, Zhu R, Ke X X, Zhang J M, Wang L X, Zhang L, Liao Z M, Yu D P 2015 Cryst. Growth Des. 15 3264Google Scholar

    [29]

    Rice A D, Park K, Hughes E T, Mukherjee K, Alberi K 2019 Phys. Rev. Mater. 3 121201Google Scholar

    [30]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [31]

    Schonherr P, Hesjedal T 2015 Appl. Phys. Lett. 106 013115Google Scholar

    [32]

    Hwang Y, Choi J, Dung D D, Shin Y, Cho S 2011 J. Appl. Phys. 109 063914Google Scholar

    [33]

    Dai Z J, Manjappa M, Yang Y K, Tan T C W, Qiang B, Han S, Wong L J, Xiu F X, Liu W W, Singh R 2021 Adv. Funct. Mater. 31 2011011Google Scholar

    [34]

    Nishihaya S, Uchida M, Nakazawa Y, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Kawasaki M 2018 Phys. Rev. B 97 245103Google Scholar

    [35]

    Jia Z Z, Li C Z, Li X Q, Shi J R, Liao Z M, Yu D P, Wu X S 2016 Nat. Commun. 7 13013Google Scholar

  • 图 1  Mn3As2掺杂Cd3As2纳米结构制备流程示意图

    Fig. 1.  Schematic diagram of preparation process of Mn3As2-doped Cd3As2 nanostructures.

    图 2  Mn3As2掺杂Cd3As2薄膜、竹笋纳米线结构的XRD, 以及3种Cd3As2晶体结构标准卡片图

    Fig. 2.  XRD patterns of Mn3As2-doped Cd3As2 films and bamboo-shoot-nanowire structures and standard XRD cards of three Cd3As2 crystalline structures.

    图 3  Mn3As2掺杂Cd3As2竹笋纳米线结构的拉曼光谱图

    Fig. 3.  Laman spectra of Mn3As2-doped bamboo-shoot-nanowire structures.

    图 4  Mn3As2掺杂Cd3As2薄膜的SEM图(第1和第2列)及EDS分析结果(第3列) (a)—(c) F0样品 ((a)插图为薄膜横截面图); (d)—(f) F0.05样品; (g)—(i) F0.1样品

    Fig. 4.  SEM images (the first and second column) and EDS analysis results (the third column) of Mn3As2-doped Cd3As2 films: (a)–(c) F0 sample (the inset of (a) shows the fracture morphology); (d)–(f) F0.05 sample; (g)–(i) F0.1 sample.

    图 5  Mn3As2掺杂Cd3As2纳米线的SEM (第1和第2列)及EDS分析结果(第3和第4列) (a)—(d) N0 样品; (e)—(h) N0.05 样品; (i)—(l) N0.1样品

    Fig. 5.  SEM images (the first and second column) and EDS analysis results (the third and fourth column) of Mn3As2-doped Cd3As2 nanowires: (a)–(d) N0 sample; (e)–(h) N0.05 sample; (i)–(l) N0.1 sample.

    图 6  Cd3As2竹笋纳米线结构横截面的SEM图(a)—(c)及EDS元素成分分析结果(d), (e)

    Fig. 6.  SEM images of the fracture cross section (a)–(c) and EDS analysis and compositional distributions (d), (e) of Cd3As2 bamboo-shoot-nanowire structure.

    图 7  Cd3As2纳米线的微结构表征 (a) TEM图; (b) 元素成分; (c) HRTEM图; (d) 电子衍射花样图

    Fig. 7.  Microstructure characteristics of Cd3As2 nanowires: (a) TEM image; (b) elemental compositions; (c) HRTEM image; (d) selected area electron diffraction image.

    图 8  (a)—(c) Mn3As2掺杂Cd3As2薄膜的电导率 (a)、塞贝克系数(b)、功率因子(c)随温度的变化曲线; (d) Mn3As2掺杂Cd3As2薄膜的室温载流子浓度和霍尔迁移率

    Fig. 8.  (a)–(c) Temperature dependence of electrical conductivity (a), Seebeck coefficient (b), and power factor (c) of Mn3As2-doped Cd3As2 films; (d) room-temperature carrier concentration and Hall mobility (d) of Mn3As2-doped Cd3As2 films.

    图 9  (a)—(c) Mn3As2掺杂Cd3As2竹笋纳米线结构的电导率 (a)、塞贝克系数 (b)、功率因子(c)随温度的变化曲线; (d) Mn3As2掺杂Cd3As2竹笋纳米线结构的室温载流子浓度和霍尔迁移率

    Fig. 9.  (a)–(c) Temperature dependence of electrical conductivity (a), Seebeck coefficient (b), and power factor (c) of Mn3As2-doped Cd3As2 bamboo-shoot-nanowire structure; (d) room-temperature carrier concentration and Hall mobility of Mn3As2-doped Cd3As2 bamboo-shoot-nanowire structure.

  • [1]

    Kaleem U, Meng Y F, Sun Y, et al. 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [2]

    Wang H L, Ma J L, Wei Q Q, Zhao J H 2020 J. Semicond. 41 072903Google Scholar

    [3]

    Zhang Y X, Nappini S, Sankar R, Bondino F, Gao J F, Politano A 2021 J. Mater. Chem. C 9 1235Google Scholar

    [4]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [5]

    Cheng P H, Zhang C, Liu Y W, et al. 2016 New J. Phys. 18 083003Google Scholar

    [6]

    Park K, Jung M, Kim D, Bayogan J R, Lee J H, An S J, Seo J, Seo J, Ahn J P, Park J 2020 Nano Lett. 20 4939Google Scholar

    [7]

    Suslov A V, Davydov A B, Oveshnikov L N, et al. 2019 Phys. Rev. B 99 094512Google Scholar

    [8]

    Zhou T, Zhang C, Zhang H S, Xiu F X, Yang Z Q 2016 Inorg. Chem. Front. 3 1637Google Scholar

    [9]

    Zhang C, Zhou T, Liang S H, et al. 2016 Chin. Phys. B 25 017202Google Scholar

    [10]

    Wang H H, Luo X G, Peng K L, et al. 2019 Adv. Funct. Mater. 29 1902437Google Scholar

    [11]

    Pariari A, Khan N, Singha R, Satpati B, Mandal P 2016 Phys. Rev. B 94 165139Google Scholar

    [12]

    杨亮亮, 勤源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东 2021 物理学报 70 076802Google Scholar

    Yang L L, Qin Y H, Wei J T, Song P S, Zhang M L, Yang F H, Wang X D 2021 Acta Phys. Sin. 70 076802Google Scholar

    [13]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 物理学报 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [14]

    Sun N K, Li W, Pang C, Zhong D H, Li M L 2021 Solid State Commun. 339 114505Google Scholar

    [15]

    Liao W W, Yang L, Chen J, et al. 2019 Chem. Eng. J. 371 593Google Scholar

    [16]

    Yue Z M, Zhao K P, Chen H Y, Qiu P F, Zhao L D, Shi X 2021 Chin. Phys. Lett. 38 117201Google Scholar

    [17]

    胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健 2022 物理学报 71 047101Google Scholar

    Hu W W, Sun J C, Zhang Y, Guo Y, Fan Y T, Tang X F, Tan G J 2022 Acta Phys. Sin. 71 047101Google Scholar

    [18]

    Chen R K, Lee J, Lee W, Li D Y 2019 Chem. Rev. 119 9260Google Scholar

    [19]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [20]

    Guo J, Zhao X G, Sun N K, Xiao X F, Liu W, Zhang Z D 2021 J. Mater. Sci. Technol. 76 247Google Scholar

    [21]

    Celinski Z, Burian A, Rzepa B, Zdanowicz W 1987 Mat. Res. Bull. 22 419Google Scholar

    [22]

    Ril A I, Marenkin S F, Volkov V V, Oveshnikov L N, Kozlov V V 2021 J. Alloys Compd. 892 162082

    [23]

    Oveshnikov L N, Davydov A B, Suslov A V, Ril A I, Marenkin S F, Vasiliev A L, Aronzon B A 2020 Sci. Rep. 10 4601Google Scholar

    [24]

    Wei S, Lu J, Yu W C, Zhang H B, Qian Y T 2006 Cryst. Growth Des. 6 849Google Scholar

    [25]

    Weszka J 1999 Phys. Stat. Sol. (b) 211 605Google Scholar

    [26]

    Davydov A B, Oveshnikov L N, SuSlov A V, Ril A I, Marenkin S F, Aronzon B A 2020 Phys. Solid State 62 419Google Scholar

    [27]

    Marenkin S F, Trukhan V M, Fedorchenko I V, TruKhanov S V, Shoukavaya T V 2014 Russ. J. Inorg. Chem. 59 355Google Scholar

    [28]

    Li C Z, Zhu R, Ke X X, Zhang J M, Wang L X, Zhang L, Liao Z M, Yu D P 2015 Cryst. Growth Des. 15 3264Google Scholar

    [29]

    Rice A D, Park K, Hughes E T, Mukherjee K, Alberi K 2019 Phys. Rev. Mater. 3 121201Google Scholar

    [30]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [31]

    Schonherr P, Hesjedal T 2015 Appl. Phys. Lett. 106 013115Google Scholar

    [32]

    Hwang Y, Choi J, Dung D D, Shin Y, Cho S 2011 J. Appl. Phys. 109 063914Google Scholar

    [33]

    Dai Z J, Manjappa M, Yang Y K, Tan T C W, Qiang B, Han S, Wong L J, Xiu F X, Liu W W, Singh R 2021 Adv. Funct. Mater. 31 2011011Google Scholar

    [34]

    Nishihaya S, Uchida M, Nakazawa Y, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Kawasaki M 2018 Phys. Rev. B 97 245103Google Scholar

    [35]

    Jia Z Z, Li C Z, Li X Q, Shi J R, Liao Z M, Yu D P, Wu X S 2016 Nat. Commun. 7 13013Google Scholar

  • [1] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [2] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [3] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能. 物理学报, 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [4] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [5] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响. 物理学报, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [6] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [7] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [8] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [9] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [10] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [11] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [12] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [13] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [14] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [15] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [16] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [17] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [18] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [19] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  3956
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-05-23
  • 上网日期:  2022-09-07
  • 刊出日期:  2022-09-20

/

返回文章
返回