搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三端口光纤耦合原子气室探头的开发及其微波数字通信应用

林沂 吴逢川 毛瑞棋 姚佳伟 刘燚 安强 付云起

引用本文:
Citation:

三端口光纤耦合原子气室探头的开发及其微波数字通信应用

林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起
cstr: 32037.14.aps.71.20220594

Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication

Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi
cstr: 32037.14.aps.71.20220594
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 基于里德伯原子的量子微波测量技术快速发展并受到广泛关注, 该技术已展现出探头尺寸与波长无关、宽频谱测量等显著优势, 光纤耦合原子气室探头是便携式量子微波测量系统的关键技术之一. 现有双端口光纤耦合原子气室探头的探测光输出与耦合光输入共用渐变折射率(graded index, GRIN)透镜及光纤的方式, 使得探测光传输效率仅为17%. 在此条件下, 需通过增大探测光输入功率以获得足够的透射光输出功率, 这使得电磁诱导透明(electromagnetically-induced transparency, EIT)光谱展宽至11 MHz, 测量灵敏度降低. 本文提出集成二向色镜的三端口光纤耦合原子气室探头, 在保证原子气室中探测光、耦合光重叠相向传输的条件下, 出射的探测光被分离至独立的GRIN透镜及输出光纤, 探测光传输效率为40.4%, EIT光谱半高宽被降低至6 MHz. 该探头被用于开展EIT光谱测量、基于空间混频技术的数字通信实验研究, 实验结果验证了该探头对数字通信信号的接收能力.
    The quantum microwave measurement technology based on Rydberg atoms has developed rapidly and received widespread attention. It has shown significant advantages such as probe size independent of wavelength and broad spectrum measurement. Fiber-coupled vapor cell probe is one of the key technologies for portable quantum microwave measurement systems. The existing two-port fiber-coupled probe shares the graded index (GRIN) lens and optical fibers for outputting detection light with inputting coupling light, which limits light transmission efficiency of the detection light to 17%. Under these conditions, the power of the inputting detection light must be increased to ensure sufficient power to output the detection light, causing the electromagnetically-induced transparency (EIT) spectrum to broaden to 11 MHz, ultimately resulting in reduced measurement sensitivity. In this work, we propose a three-port fiber-coupled atomic gas chamber probe with an integrated dichroic mirror. On condition that the detection light and coupling light are transmitted in opposite directions and overlap in the vapor cell, the outgoing detection light is separated into two beams; one goes to an individual GRIN lens and the other to the output fiber, and the detection light transmission efficiency is 40.4%, and the half-height width of the EIT spectrum is reduced to 6 MHz. The probe is used to measure the microwave electric field intensity and phase; its effectiveness is verified by its ability to receive QPSK, 16QAM digitally modulated signals.
      通信作者: 付云起, yunqifu@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901495, 12104509)和国防科技大学科研计划(批准号: ZK19-20, ZK20-13)资助的课题.
      Corresponding author: Fu Yun-Qi, yunqifu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901495, 12104509) and the Scientific Research Project of National University of Defense Technology, China (Grant Nos. ZK19-20, ZK20-13).
    [1]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [2]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sin. 37 279Google Scholar

    [3]

    黄巍, 梁振涛, 杜炎雄, 颜 辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [4]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar

    [5]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [6]

    Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456Google Scholar

    [8]

    Anderson D A, Raithel G A, Paradis E G, Sapiro R E 2020 US Patent US10823775B2 [2020-11-3]

    [9]

    Holloway C L, Simons M T, Haddab A H, Williams C J, Holloway M W 2019 AIP Adv. 9 065110Google Scholar

    [10]

    Anderson D A, Sapiro R E, Raithel G 2020 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [13]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [14]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [15]

    Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Phys. Commun. 220 319Google Scholar

    [16]

    Robinson A K, Artusio-Glimpse A B, Simons M T, Holloway C L 2021 Phys. Rev. A 103 023704Google Scholar

    [17]

    Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electro. Compa. 59 717Google Scholar

    [18]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J A 2015 Phys. Rev. Appl. 4 044015Google Scholar

    [19]

    McKinley M D, Remley K A, Myslinski M, Kenney J S, Schreurs D, Nauwelaers B 2004 64th ARFTG Conference Orlando, December 3, 2004 pp45–52

    [20]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

  • 图 1  三端口光纤耦合原子气室探头

    Fig. 1.  Three-port fiber-coupled vapor cell probe.

    图 2  三端口光纤耦合原子气室探头测量实验 (a)系统示意框图; (b)测试场景

    Fig. 2.  Three-port fiber-coupled vapor cell probe measurement experiment: (a) Schematic block diagram of the system; (b) experiment scenario.

    图 3  原子气室内的电场分布仿真结果 (a) fLO = 9.945 GHz, yoz平面电场强度分布; (b)电场强度随频率的变化

    Fig. 3.  Simulated results of the electric field distribution inside the vapor cell: (a) Electric field intensity distribution in the yoz plane at fLO = 9.945 GHz; (b) the electric field intensity with variable frequency.

    图 4  G = 11.57 dB, R = 3 m 时, EIT-AT光谱测试结果

    Fig. 4.  Experimental results of EIT-AT spectral at G = 11.57 dB, R = 3 m.

    图 5  fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m时, 中频信号时域波形测试结果

    Fig. 5.  Experimental results of IF signal time domain waveform at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m.

    图 6  fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m时, 中频信号相位测试结果

    Fig. 6.  Experimental results of IF signal phase at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m.

    图 7  fLO = 9.945 GHz, fSIG = 9.9451 GHz时, 2047个符号中频信号星座图的测试结果 (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s)

    Fig. 7.  Experimental results of 2047 symbol stream for IF signal constellation diagram with fLO = 9.945 GHz, fSIG = 9.9451 GHz: (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s).

    图 8  原子气室空间响应仿真结果 (a)立方形和(b)圆柱形原子气室的电场强度随入射角的变化; (c)空间响应平坦度随频率的变化

    Fig. 8.  Simulated results of spatial response of vapor cell: Electric field intensity with variable incident angle for the (a) cubic and (b) cylindrical vapor cell; (c) spatial response flatness with variable frequency.

  • [1]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [2]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sin. 37 279Google Scholar

    [3]

    黄巍, 梁振涛, 杜炎雄, 颜 辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [4]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar

    [5]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [6]

    Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456Google Scholar

    [8]

    Anderson D A, Raithel G A, Paradis E G, Sapiro R E 2020 US Patent US10823775B2 [2020-11-3]

    [9]

    Holloway C L, Simons M T, Haddab A H, Williams C J, Holloway M W 2019 AIP Adv. 9 065110Google Scholar

    [10]

    Anderson D A, Sapiro R E, Raithel G 2020 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [13]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [14]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [15]

    Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Phys. Commun. 220 319Google Scholar

    [16]

    Robinson A K, Artusio-Glimpse A B, Simons M T, Holloway C L 2021 Phys. Rev. A 103 023704Google Scholar

    [17]

    Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electro. Compa. 59 717Google Scholar

    [18]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J A 2015 Phys. Rev. Appl. 4 044015Google Scholar

    [19]

    McKinley M D, Remley K A, Myslinski M, Kenney J S, Schreurs D, Nauwelaers B 2004 64th ARFTG Conference Orlando, December 3, 2004 pp45–52

    [20]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

  • [1] 张亚鹏, 郑宇杰, 汤婧雯, 施帅, 周艳丽, 刘伟涛. 集体耗散诱导下里德伯原子气体的非平衡相变. 物理学报, 2025, 74(22): 223201. doi: 10.7498/aps.74.20251237
    [2] 李芳. 基于室温里德伯原子四波混频的微波-光波转换特性. 物理学报, 2025, 74(16): 164209. doi: 10.7498/aps.74.20250706
    [3] 蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民. 基于纳秒光脉冲激发的里德伯原子光谱. 物理学报, 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [4] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析. 物理学报, 2025, 74(4): 043201. doi: 10.7498/aps.74.20241362
    [5] 马东辉, 贺欣欣, 滑泽宇, 李艳君, 董海峰, 温焕飞, 菅原康弘, 唐军, 马宗敏, 刘俊. 碱金属原子气室中自旋极化态的高时空分辨调制方法. 物理学报, 2025, 74(9): 090702. doi: 10.7498/aps.74.20241634
    [6] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [7] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [8] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [9] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [10] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [11] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [12] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [13] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [14] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [15] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [16] 樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的高灵敏微波探测与通信. 物理学报, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [17] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [18] 刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼. 一种新型的双向长距离光纤混沌保密通信系统性能研究. 物理学报, 2012, 61(2): 024203. doi: 10.7498/aps.61.024203
    [19] 颜森林. 光纤混沌双芯双向保密通信系统研究. 物理学报, 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [20] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
计量
  • 文章访问数:  7958
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-04-21
  • 上网日期:  2022-08-24
  • 刊出日期:  2022-09-05

/

返回文章
返回