搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维范德瓦耳斯材料的超导物性研究及性能调控

黄佳贝 廉富镯 汪致远 孙世涛 李明 张棣 蔡晓凡 马国栋 麦志洪 Andy Shen 王雷 于葛亮

引用本文:
Citation:

二维范德瓦耳斯材料的超导物性研究及性能调控

黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮

Two-dimensional van der Waals: Characterization and manipulation of superconductivity

Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang
PDF
HTML
导出引用
  • 超导现象自从1911年被发现以来一直是凝聚态物理领域的热门研究方向. 近年来, 二维范德瓦耳斯材料在超导领域中备受瞩目, 展现出多种新的物理现象, 如伊辛超导体、拓扑超导等, 可以为探索丰富多彩的物理效应和新奇物理现象提供一个非常广阔的研究平台. 本文从二维范德瓦耳斯材料的超导特性入手, 着重论述了二维范德瓦耳斯材料的分类、合成方法、表征和调控手段等方面. 最后指出了一些当前需要解决的问题, 并对二维范德瓦耳斯材料在超导领域的未来前景进行了展望.
    Superconductivity has become a fascinating research field in condensed matter physics since its discovery in 1911. Nowadays, two-dimensional materials exhibit a variety of new physical phenomena, such as Ising superconductivity, topological superconductivity, and unconventional superconductivity. A number of two-dimensional van der Waals crystals exhibit superconductivity, which provide us with a broad research platform for exploring various physical effects and novel phenomena. In this review, we focus our attention on superconducting properties of two-dimensional van der Waals crystals, and highlight the recent progress of the state-of-the-art research on synthesis, characterization, and isolation of single and few layer nanosheets and the assembly of two-dimensional van der Waals superconductors. Finally we conclude the future research directions and prospects in two-dimensional materials with superconductivity.
      通信作者: 王雷, leiwang@nju.edu.cn ; 于葛亮, yugeliang@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: SQ2018YFA030066, SQ2018YFA030143)、国家自然科学基金(批准号: 11974169)、中央高校基本科研业务费(批准号: 020414380087, 020414913201)、江苏省基础研究计划(批准号: BK20190283)和南通市市级基础科学研究和社会民生科技指令性项目(批准号: MS22021021)资助的课题.
      Corresponding author: Wang Lei, leiwang@nju.edu.cn ; Yu Ge-Liang, yugeliang@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. SQ2018YFA030066, SQ2018YFA030143), the National Natural Science Foundation of China (Grant No. 11974169), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 020414380087, 020414913201), the Basic Research Program of Jiangsu Province, China (Grant No. BK20190283), and the Science and Technology Plan of Nantong City, China (Grant No. MS22021021).
    [1]

    van Delft D, Kes P 2010 Physics Today 63 38Google Scholar

    [2]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    Hahn S, Kim K, Kim K, Hu X, Painter T, Dixon I, Kim S, Bhattarai K R, Noguchi S, Jaroszynski J, Larbalestier D C 2019 Nature 570 496Google Scholar

    [4]

    熊嘉阳, 邓自刚 2021 交通运输工程学报 21 177Google Scholar

    Xiong J Y, Deng Z G 2021 J. Traffic Transport. Eng. 21 177Google Scholar

    [5]

    Mott N F 1968 Philos. Mag. 17 1259Google Scholar

    [6]

    Strongin M, Thompson R S, Kammerer O F, Crow J E 1970 Phys. Rev. B 1 1078Google Scholar

    [7]

    Uchihashi T 2016 Supercond. Sci. Technol. 30 013002Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [10]

    Wang Q, Zhang W, Wang L, He K, Ma X, Xue Q 2013 J. Phys. Condens. Matter 25 095002Google Scholar

    [11]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [12]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [13]

    王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷 2021 物理学报 70 138202Google Scholar

    Wang H L, Zong Q J, Huang Y, Chen Y W, Zhu Y J, Wei L N, Wang L 2021 Acta Phys. Sin. 70 138202Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar

    [16]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [17]

    Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659Google Scholar

    [18]

    Bussmann Holder A, Keller H 2020 Z. Naturforsch. B. 75 3Google Scholar

    [19]

    Liu G, Bao X, Dong W, Wei Q, Mu H, Zhu W, Wang B, Li J, Shabbir B, Huang Y, Xing G, Yu J, Gao P, Shao H, Li X, Bao Q 2021 ACS Nano 15 8919Google Scholar

    [20]

    Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar

    [21]

    Kharissova O V, Kopnin E M, Maltsev V V, Leonyuk N I, León Rossano L M, Pinus I Y, Kharisov B I 2014 Crit. Rev. Solid State Mater. Sci. 39 253Google Scholar

    [22]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [23]

    Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X, Jiang M 2014 Nat. Commun. 5 5708Google Scholar

    [24]

    Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, Zhang Y B 2019 Nature 575 156Google Scholar

    [25]

    Lee K H, Hoffmann R 2006 J. Phys. Chem. A 110 609Google Scholar

    [26]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782Google Scholar

    [27]

    蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳 2021 物理学报 70 127801Google Scholar

    Jiang X H, Qin S C, Xing Z Y, Zou X Y, Deng Y F, Wang W, Wang L 2021 Acta Phys. Sin. 70 127801Google Scholar

    [28]

    Boix Constant C, Mañas Valero S, Córdoba R, Coronado E 2021 Adv. Electron. Mater. 7 2000987Google Scholar

    [29]

    Pan J, Guo C, Song C, Lai X, Li H, Zhao W, Zhang H, Mu G, Bu K, Lin T, Xie X, Chen M, Huang F 2017 J. Am. Chem. Soc. 139 4623Google Scholar

    [30]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [31]

    Yang Y, Fang S, Fatemi V, Ruhman J, Navarro Moratalla E, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Phys. Rev. B 98 035203Google Scholar

    [32]

    Naik S, Kalaiarasan S, Nath R C, Sarangi S N, Sahu A K, Samal D, Biswal H S, Samal S L 2021 Inorg. Chem. 60 4588Google Scholar

    [33]

    Husremović S, Groschner C K, Inzani K, Craig I M, Bustillo K C, Ercius P, Kazmierczak N P, Syndikus J, Van Winkle M, Aloni S, Taniguchi T, Watanabe K, Griffin S M, Bediako D K 2022 J. Am. Chem. Soc. 144 12167Google Scholar

    [34]

    Fang Y, Pan J, He J, Luo R, Wang D, Che X, Bu K, Zhao W, Liu P, Mu G, Zhang H, Lin T, Huang F 2018 Angew. Chem. Int. Ed. 57 1232Google Scholar

    [35]

    Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, Xie Y 2019 Adv. Mater. 31 1900568Google Scholar

    [36]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605Google Scholar

    [37]

    Ge J F, Liu Z L, Liu C h, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285Google Scholar

    [38]

    Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K, Wang J 2017 Nano Lett. 17 6802Google Scholar

    [39]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [40]

    Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [41]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [42]

    Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914Google Scholar

    [43]

    Geim A K, Novoselov K S 2009 Nanosci. Technol. (Co-Published with Macmillan Publishers Ltd, UK) pp11–19

    [44]

    Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923Google Scholar

    [45]

    Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265Google Scholar

    [46]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo Herrero P 2018 Nature 556 80Google Scholar

    [47]

    Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774Google Scholar

    [48]

    Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [49]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [50]

    Lee J, Lee W, Kim G Y, Choi Y B, Park J, Jang S, Gu G, Choi S Y, Cho G Y, Lee G H, Lee H J 2021 Nano Lett. 21 10469Google Scholar

    [51]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [52]

    VahidMohammadi A, Rosen J, Gogotsi Y 2021 Science 372 eabf1581Google Scholar

    [53]

    Meshkian R, Näslund L Å, Halim J, Lu J, Barsoum M W, Rosen J 2015 Scr. Mater. 108 147Google Scholar

    [54]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [55]

    Wang T, Tian X, Yang Y, Li Y W, Wang J, Beller M, Jiao H 2016 Surf. Sci. 651 195Google Scholar

    [56]

    Zhang J J, Dong S 2017 J. Chem. Phys. 146 034705Google Scholar

    [57]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135Google Scholar

    [58]

    Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar

    [59]

    Aretouli K E, Tsoutsou D, Tsipas P, Marquez Velasco J, Aminalragia Giamini S, Kelaidis N, Psycharis V, Dimoulas A 2016 Appl. Mater. Interfaces 8 23222Google Scholar

    [60]

    Zheng R J 2017 Ph. D. Dissertation (Riverside: University of California)

    [61]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2015 Nat. Phys. 12 92Google Scholar

    [62]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [63]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [64]

    Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P, Wu X, Wu K, Chen L 2022 Nat. Chem. 14 25Google Scholar

    [65]

    Chen F, Wang Y, Su W, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519Google Scholar

    [66]

    Choudhary N, Park J, Hwang J Y, Choi W 2014 ACS Appl. Mater. Interfaces 6 21215Google Scholar

    [67]

    Hsieh Y T, Huang M W, Chang C C, Chen U S, Shih H C 2010 Thin Solid Films 519 1668Google Scholar

    [68]

    Yang M, Guo Y, Wang Q, Xie J 2014 J. Nanopart. Res. 16 2598Google Scholar

    [69]

    Li F, Feng Y, Li Z, Ma C, Qu J, Wu X, Li D, Zhang X, Yang T, He Y, Li H, Hu X, Fan P, Chen Y, Zheng B, Zhu X, Wang X, Duan X, Pan A 2019 Adv. Mater. 31 1901351Google Scholar

    [70]

    Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, Wang X, He H, Tsang S H, Gao W, Suenaga K, Ma F, Yang C, Lu L, Yu T, Teo E H T, Liu G, Liu Z 2017 Nat. Commun. 8 394Google Scholar

    [71]

    Zheliuk O, Lu J, Yang J, Ye J 2017 Phys. Status Solidi Rapid Res. Lett. 11 1700245Google Scholar

    [72]

    Deng Y, Lai Y, Zhao X, Wang X, Zhu C, Huang K, Zhu C, Zhou J, Zeng Q, Duan R, Fu Q, Kang L, Liu Y, Pennycook S J, Wang X R, Liu Z 2020 J. Am. Chem. Soc. 142 2948Google Scholar

    [73]

    Xu C, Song S, Liu Z, Chen L, Wang L, Fan D, Kang N, Ma X, Cheng H M, Ren W 2017 ACS Nano 11 5906Google Scholar

    [74]

    Lin H, Zhu Q, Shu D, Lin D, Xu J, Huang X, Shi W, Xi X, Wang J, Gao L 2019 Nat. Mater. 18 602Google Scholar

    [75]

    Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Chem. Res. 2 36Google Scholar

    [76]

    Wu C R, Chang X R, Chang S W, Chang C E, Wu C H, Lin S Y 2015 J. Phys. D 48 435101Google Scholar

    [77]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457Google Scholar

    [78]

    Liu C, Singh O G, Joensen P, Curzon A E, Frindt R F 1984 Thin Solid Films 113 165Google Scholar

    [79]

    Ohashi Y, Koizumi T, Yoshikawa T, Hironaka T, Shiiki K 1997 Tanso 1997 235Google Scholar

    [80]

    Zhang Y, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803Google Scholar

    [81]

    Wang L 2014 Ph. D. Dissertation (New York: Columbia University)

    [82]

    Wang S, Yu Y, Hao J, Feng Y, Zhu J, Lin Y, Xiang B, Ru H, Pan Y, Gu G 2021 arXiv: 2112.04782

    [83]

    Zeng J, Liu E, Fu Y, Chen Z, Pan C, Wang C, Wang M, Wang Y, Xu K, Cai S, Yan X, Wang Y, Liu X, Wang P, Liang S J, Cui Y, Hwang H Y, Yuan H, Miao F 2018 Nano Lett. 18 1410Google Scholar

    [84]

    Liu F 2021 Prog. Surf. Sci. 96 100626Google Scholar

    [85]

    Li Z, Ren L, Wang S, Huang X, Li Q, Lu Z, Ding S, Deng H, Chen P, Lin J, Hu Y, Liao L, Liu Y 2021 ACS Nano 15 13839Google Scholar

    [86]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [87]

    Lin Z, Wan Z, Song F, Huang B, Jia C, Qian Q, Kang J S, Wu Y, Yan X, Peng L, Wan C, Zhou J, Sofer Z, Shakir I, Almutairi Z, Tolbert S, Pan X, Hu Y, Huang Y, Duan X 2021 Chem 7 1887Google Scholar

    [88]

    Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D, Zeng Z 2022 Nat. Protoc. 17 358Google Scholar

    [89]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [90]

    Muratore C, Voevodin A A, Glavin N R 2019 Thin Solid Films 688 137500Google Scholar

    [91]

    Greene J E 2017 J. Vac. Sci. Technol. A 35 05C204Google Scholar

    [92]

    Liu X, Hersam M C 2018 Adv. Mater. 30 1801586Google Scholar

    [93]

    Tanzi M C, Farè S, Candiani G (Tanzi M C et al. ed) 2019 Foundations of Biomaterials Engineering (Academic Press) pp393–469

    [94]

    Li J, Song P, Zhao J, Vaklinova K, Zhao X, Li Z, Qiu Z, Wang Z, Lin L, Zhao M, Herng T S, Zuo Y, Jonhson W, Yu W, Hai X, Lyu P, Xu H, Yang H, Chen C, Pennycook S J, Ding J, Teng J, Castro Neto A H, Novoselov K S, Lu J 2021 Nat. Mater. 20 181Google Scholar

    [95]

    Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S, Li S C 2022 Nat. Mater. 21 284Google Scholar

    [96]

    Crommie M F, Lutz C P, Eigler D M 1993 Science 262 218Google Scholar

    [97]

    Shao G, Xue X X, Liu X, Zhang D, Jin Y, Wu Y, You B, Lin Y C, Li S, Suenaga K, Wang X, Pan A, Li H, Hong J, Feng Y, Liu S 2020 Chem. Mater. 32 9721Google Scholar

    [98]

    Gariglio S, Reyren N, Caviglia A D, Triscone J M 2009 J. Phys. Condens. Matter 21 164213Google Scholar

    [99]

    Sun W, Wang X, Feng J, Li T, Huan Y, Qiao J, He L, Ma D 2019 Nanotechnology 30 385601Google Scholar

    [100]

    Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A 2015 J. Vac. Sci. Technol. 33 060604Google Scholar

    [101]

    Gfroerer T H 2000 Encyclopedia of Analytical Chemistry (Chichester: Wiley) pp9201–9231

    [102]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [103]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [104]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [105]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. U. S. A 111 6198Google Scholar

    [106]

    Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153Google Scholar

    [107]

    Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, Liu G 2019 Nat. Commun. 10 2044Google Scholar

    [108]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385Google Scholar

    [109]

    Berkdemir A, Gutiérrez H R, Botello Méndez A R, Perea López N, Elías A L, Chia C I, Wang B, Crespi V H, López Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755Google Scholar

    [110]

    Lui C H, Li Z, Chen Z, Klimov P V, Brus L E, Heinz T F 2011 Nano Lett. 11 164Google Scholar

    [111]

    Zhang X, Han W P, Qiao X F, Tan Q H, Wang Y F, Zhang J, Tan P H 2016 Carbon 99 118Google Scholar

    [112]

    Hou Y, Ren X, Fan J, Wang G, Dai Z, Jin C, Wang W, Zhu Y, Zhang S, Liu L, Zhang Z 2020 ACS Appl. Mater. Interfaces 12 40958Google Scholar

    [113]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [114]

    Berezinskiǐ V L 1972 Sov. J. Exp. Theor. Phys. 34 610

    [115]

    Lake B, Rønnow H M, Christensen N B, Aeppli G, Lefmann K, McMorrow D F, Vorderwisch P, Smeibidl P, Mangkorntong N, Sasagawa T, Nohara M, Takagi H, Mason T E 2002 Nature 415 299Google Scholar

    [116]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar

    [117]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [118]

    An L, Cai X, Pei D, Huang M, Wu Z, Zhou Z, Lin J, Ying Z, Ye Z, Feng X, Gao R, Cacho C, Watson M, Chen Y, Wang N 2020 Nanoscale Horiz. 5 1309Google Scholar

    [119]

    Scheurer M S, Samajdar R 2020 Phys. Rev. Res. 2 033062Google Scholar

    [120]

    Nishino T, Yamada E, Kawabe U 1986 Phys. Rev. B 33 2042Google Scholar

    [121]

    Tal O, Rosenwaks Y, Preezant Y, Tessler N, Chan C K, Kahn A 2005 Phys. Rev. Lett. 95 256405Google Scholar

    [122]

    Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001Google Scholar

    [123]

    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136Google Scholar

    [124]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [125]

    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855Google Scholar

    [126]

    Dhoot A S, Yuen J D, Heeney M, McCulloch I, Moses D, Heeger A J 2006 Proc. Natl. Acad. Sci. U. S. A. 103 11834Google Scholar

    [127]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845Google Scholar

    [128]

    Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y 2008 Appl. Phys. Lett. 92 242107Google Scholar

    [129]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [130]

    Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y 2009 Adv. Funct. Mater. 19 1046Google Scholar

    [131]

    Lin Z, Taberna P L, Simon P 2016 Electrochim. Acta 206 446Google Scholar

    [132]

    Han S, Song C L, Ma X C, Xue Q K 2021 C. R. Phys. 22 163Google Scholar

    [133]

    He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J, Sou I K 2014 Nat. Commun. 5 4247Google Scholar

    [134]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969Google Scholar

    [135]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245Google Scholar

    [136]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nat. Phys. 6 104Google Scholar

    [137]

    Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98 220504Google Scholar

    [138]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 590 249Google Scholar

    [139]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [140]

    Cao Y, Rodan Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo Herrero P 2021 Science 372 264Google Scholar

    [141]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 592 43Google Scholar

  • 图 1  铜基材料的结构 (a) Bi2Sr2CaCu2O8+x的原子结构示意图[19]; (b) La2CuO4的原子结构示意图[25]

    Fig. 1.  Structures of copper-based materials: (a) Schematic of the atomic structure of Bi2Sr2CaCu2O8+x[19]; (b) schematic of the atomic structure of La2CuO4[25] .

    图 2  过渡金属硫族化合物材料的结构 (a) 2H-NbSe2的原子结构示意图[32]; (b) 2H-TaS2的原子结构示意图[33]; (c) 1T-MoS2的原子结构示意图[34]; (d) 1T-MoS2电阻率与温度的依赖关系[34]

    Fig. 2.  Structures of TMDCs: (a) Schematics of the atomic structure of 2H-NbSe2[32]; (b) schematics of the atomic structure of 2H-TaS2[33]; (c) schematics of the atomic structure of 1T-MoS2[34]; (d) temperature dependence of electrical resistivity of 1T-MoS2[34].

    图 3  (a) 石墨烯扭角结构示意图[44]; (b) 过渡金属碳(氮)化物自上而下剥离过程示意图[51]

    Fig. 3.  (a) Schematic of the twist structure of graphene[44]; (b) schematic for top-down stripping process of transition metal carbon (nitrogen) compounds [51].

    图 4  CVD法制备示意图与超导性质 (a) 控制合成3R-TaSe2原子层的反应腔示意图[72]; (b) CVD法直接生长graphene/2D α-Mo2C晶体异质结的过程示意图[73]; (c) 3R-TaSe2超导电性, 其超导转变温度Tc = 1.6 K[72]; (d) 石墨烯/Mo2C异质结在T = 100 mK时的夫琅禾费衍射图像, 深蓝色区域对应于零电阻状态, 虚线标记临界电流Ic的变化曲线表现磁场的调制作用[73]

    Fig. 4.  Schematics of the CVD method and characteristics of 2D superconductors: (a) Schematic of the reaction chamber for the controlled synthesis of TaSe2 atomic layers[72]; (b) direct growth of graphene/2D α-Mo2C heterostructures by CVD method[73]; (c) superconductivities of 3R-TaSe2, Tc = 1.6 K[72]; (d) Fraunhofer-like diffraction pattern of graphene/Mo2C heterostructure measured at 100 mK. The dark blue regions correspond to the zero-resistance state. The critical current Ic, denoted by the dashed lines, exhibits a modulation as a function of magnetic fields[73].

    图 5  层状晶体的机械剥离过程示意图[89] (a) SiO2/Si基底和与带有石墨薄片的胶带的光学图像; (b) 氧等离子体清洗SiO2/Si基底; (c) 石墨胶带与基底表面接触, 然后放在热板上, 在空气中以100 ℃加热2 min; (d) 将基底从热板上移除, 并剥落胶带; (e) 石墨烯剥离后的基底光学图像; (f) 基片上石墨烯薄层的光学显微图, 薄层的厚度在1—4层之间呈阶梯变化

    Fig. 5.  Illustration of the exfoliation process for layered crystals[89]: (a) Optical image of the SiO2/Si substrate and adhesive tape with graphite flakes; (b) oxygen plasma cleaning of the SiO2/Si substrate; (c) the graphite tape contacts the substrate, and then heat the substrate (with tape) on a hot plate at ~100 ℃ in air for 2 min; (d) removal of the substrate from the hot plate and peeling off of the tape; (e) optical image of the substrate after graphene exfoliation; (f) optical micrograph of one of the graphene flakes on the substrate in panel (e), the flake has a thickness varying in steps between 1–4 layers.

    图 6  STM, AFM和S/TEM的示意图[92] (a) 具有H2功能化的STM示意图, 以及电子隧穿过程, H2可以提高空间分辨率. (b) 具有 CO 分子功能化的AFM示意图, 以及尖端和样品之间的范德瓦耳斯相互作用曲线. 红色和绿色区域分别对应于排斥作用和吸引作用. (c) STEM和TEM示意图. STEM使用聚焦电子束(紫色), TEM使用准直电子束(粉红色)

    Fig. 6.  Schematic of STM, AFM and S/TEM[92]: (a) Schematic of STM with hydrogen functionalization, and electron tunneling process; (b) schematic of AFM with CO molecule functionalization, and the van der Waals interaction between the tip and sample; the red and green regions correspond to repulsive and attractive mode AFM, respectively; (c) schematic of STEM and TEM. STEM utilizes a focused electron beam (purple), whereas TEM uses a collimated beam (pink).

    图 7  WS2的结构示意图和原子力显微镜图像[97] (a) 通过杂质原子Sn的辅助调控得到的WS2示意图以及两种WS2样品的光镜图, 有Sn原子, 表现出60°堆叠, 无Sn原子, 表现出0°堆叠, 比例尺为10 μm; (b) 1L—6L WS2的AFM图像, 比例尺为5 μm

    Fig. 7.  Schematics of WS2 structure and AFM images[97]: (a) Schematics of the regulated growth of 0° stacking WS2 without Sn and 60° stacking WS2 with Sn and optical images of 0° and 60° stacking bilayer WS2. Scale bar: 10 μm[97]. (b) AFM images of 1L to 6L WS2. Scale bar: 5 μm.

    图 8  透射电子显微镜图像[73] (a) 三角形、六角形、八角形和非角形2D α-Mo2C晶体的石墨烯异质结构的亮场透射电子显微镜图像(比例尺为200 nm); (b) 2D α-Mo2C样品区域的电子衍射图案, 显示存在两组六角周期结构, 红点对应2D α-Mo2C晶体, 绿圈对应单层石墨烯, 比例尺为200 nm

    Fig. 8.  Schematics of TEM: (a) Bright-field TEM images of the heterostructures of graphene with triangular, hexagonal, octagonal, and nonagonal 2D α-Mo2C crystals (Scale bars: 200 nm)[73]; (b) selected area electron diffraction patterns taken from the regions with 2D α-Mo2C in (a), showing two sets of patterns corresponding to 2D α-Mo2C (marked by red dots) and monolayer graphene (marked by green circles) with the same lattice orientation (marked by red arrows) for each case, scale bars: 200 nm[73].

    图 9  不同叠加模式下的SHG响应[97] (a) 0°和60°叠加WS2的SHG图像, 插图为相应的光学图像, 比例尺为5 μm; (b) 激发功率相关的SHG强度; (c) 拟合斜率为1.99的双对数图; (d) 0和60°堆叠WS2的SHG强度随层数的变化

    Fig. 9.  SHG responses corresponding to the different stacking modes[97]: (a) SHG images of 0° and 60° stacking WS2 ( Inset: the corresponding optical images. Scale bars: 5 μm); (b) excitation power-dependent SHG intensity; (c) double logarithmic plot with the fitting slope of 1.99; (d) SHG intensity of 0° and 60° stacking WS2 as a function of layer number.

    图 10  MoS2薄层的超导相变[129] (a) 双栅极器件及输运测试结构; (b) MoS2超导相图, 横坐标表示载流子浓度

    Fig. 10.  Superconductivity transition of MoS2 flakes[129]: (a) Dual-gate device and transport measurement configuration; (b) the phase diagram showing super-conductivity of MoS2, where horizontal axis represents the carrier density.

    图 11  FeSe薄膜基底的影响[134] (a) K/FeSe/STO的STM形貌图, 该样品是以SrTiO3(001)为基底, 通过K原子掺杂的2 UC FeSe薄膜, K的覆盖率是0.163 ML (monolayer, ML), 插图为K/FeSe/STO的典型隧穿dI/dV曲线, 显示存在较大的超导间隙(~15 meV); (b) 在SrTiO3和石墨化的SiC基底上的FeSe薄膜, 得到的超导间隙随薄膜厚度的演化, 间隙的大小取自不同位置的5—10个谱线的平均, 绿线显示块体FeSe的超导间隙

    Fig. 11.  Effects of substrate on the superconductivity of epitaxial FeSe films[134]: (a) Topographic images of K/FeSe/STO sample, the K doped 2 UC FeSe films is grown on SrTiO3 (001) substrates, the K coverage is 0.163 ML; Insert: Typical tunneling conductance (dI/dV) curves taken on the 2 UC FeSe/SrTiO3 films indicates a optimized superconducting gap (~15 meV); (b) evolution of optimal SC gaps for different thickness of FeSe films on SrTiO3 and graphitized SiC. The gap size is obtained by averaging 5–10 spectra taken at different locations. Green dashed line indicates the SC gap of bulk FeSe (2.2 meV).

  • [1]

    van Delft D, Kes P 2010 Physics Today 63 38Google Scholar

    [2]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    Hahn S, Kim K, Kim K, Hu X, Painter T, Dixon I, Kim S, Bhattarai K R, Noguchi S, Jaroszynski J, Larbalestier D C 2019 Nature 570 496Google Scholar

    [4]

    熊嘉阳, 邓自刚 2021 交通运输工程学报 21 177Google Scholar

    Xiong J Y, Deng Z G 2021 J. Traffic Transport. Eng. 21 177Google Scholar

    [5]

    Mott N F 1968 Philos. Mag. 17 1259Google Scholar

    [6]

    Strongin M, Thompson R S, Kammerer O F, Crow J E 1970 Phys. Rev. B 1 1078Google Scholar

    [7]

    Uchihashi T 2016 Supercond. Sci. Technol. 30 013002Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [10]

    Wang Q, Zhang W, Wang L, He K, Ma X, Xue Q 2013 J. Phys. Condens. Matter 25 095002Google Scholar

    [11]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [12]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [13]

    王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷 2021 物理学报 70 138202Google Scholar

    Wang H L, Zong Q J, Huang Y, Chen Y W, Zhu Y J, Wei L N, Wang L 2021 Acta Phys. Sin. 70 138202Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar

    [16]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [17]

    Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659Google Scholar

    [18]

    Bussmann Holder A, Keller H 2020 Z. Naturforsch. B. 75 3Google Scholar

    [19]

    Liu G, Bao X, Dong W, Wei Q, Mu H, Zhu W, Wang B, Li J, Shabbir B, Huang Y, Xing G, Yu J, Gao P, Shao H, Li X, Bao Q 2021 ACS Nano 15 8919Google Scholar

    [20]

    Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar

    [21]

    Kharissova O V, Kopnin E M, Maltsev V V, Leonyuk N I, León Rossano L M, Pinus I Y, Kharisov B I 2014 Crit. Rev. Solid State Mater. Sci. 39 253Google Scholar

    [22]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [23]

    Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X, Jiang M 2014 Nat. Commun. 5 5708Google Scholar

    [24]

    Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, Zhang Y B 2019 Nature 575 156Google Scholar

    [25]

    Lee K H, Hoffmann R 2006 J. Phys. Chem. A 110 609Google Scholar

    [26]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782Google Scholar

    [27]

    蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳 2021 物理学报 70 127801Google Scholar

    Jiang X H, Qin S C, Xing Z Y, Zou X Y, Deng Y F, Wang W, Wang L 2021 Acta Phys. Sin. 70 127801Google Scholar

    [28]

    Boix Constant C, Mañas Valero S, Córdoba R, Coronado E 2021 Adv. Electron. Mater. 7 2000987Google Scholar

    [29]

    Pan J, Guo C, Song C, Lai X, Li H, Zhao W, Zhang H, Mu G, Bu K, Lin T, Xie X, Chen M, Huang F 2017 J. Am. Chem. Soc. 139 4623Google Scholar

    [30]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [31]

    Yang Y, Fang S, Fatemi V, Ruhman J, Navarro Moratalla E, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Phys. Rev. B 98 035203Google Scholar

    [32]

    Naik S, Kalaiarasan S, Nath R C, Sarangi S N, Sahu A K, Samal D, Biswal H S, Samal S L 2021 Inorg. Chem. 60 4588Google Scholar

    [33]

    Husremović S, Groschner C K, Inzani K, Craig I M, Bustillo K C, Ercius P, Kazmierczak N P, Syndikus J, Van Winkle M, Aloni S, Taniguchi T, Watanabe K, Griffin S M, Bediako D K 2022 J. Am. Chem. Soc. 144 12167Google Scholar

    [34]

    Fang Y, Pan J, He J, Luo R, Wang D, Che X, Bu K, Zhao W, Liu P, Mu G, Zhang H, Lin T, Huang F 2018 Angew. Chem. Int. Ed. 57 1232Google Scholar

    [35]

    Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, Xie Y 2019 Adv. Mater. 31 1900568Google Scholar

    [36]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605Google Scholar

    [37]

    Ge J F, Liu Z L, Liu C h, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285Google Scholar

    [38]

    Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K, Wang J 2017 Nano Lett. 17 6802Google Scholar

    [39]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [40]

    Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [41]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [42]

    Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914Google Scholar

    [43]

    Geim A K, Novoselov K S 2009 Nanosci. Technol. (Co-Published with Macmillan Publishers Ltd, UK) pp11–19

    [44]

    Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923Google Scholar

    [45]

    Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265Google Scholar

    [46]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo Herrero P 2018 Nature 556 80Google Scholar

    [47]

    Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774Google Scholar

    [48]

    Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [49]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [50]

    Lee J, Lee W, Kim G Y, Choi Y B, Park J, Jang S, Gu G, Choi S Y, Cho G Y, Lee G H, Lee H J 2021 Nano Lett. 21 10469Google Scholar

    [51]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [52]

    VahidMohammadi A, Rosen J, Gogotsi Y 2021 Science 372 eabf1581Google Scholar

    [53]

    Meshkian R, Näslund L Å, Halim J, Lu J, Barsoum M W, Rosen J 2015 Scr. Mater. 108 147Google Scholar

    [54]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [55]

    Wang T, Tian X, Yang Y, Li Y W, Wang J, Beller M, Jiao H 2016 Surf. Sci. 651 195Google Scholar

    [56]

    Zhang J J, Dong S 2017 J. Chem. Phys. 146 034705Google Scholar

    [57]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135Google Scholar

    [58]

    Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar

    [59]

    Aretouli K E, Tsoutsou D, Tsipas P, Marquez Velasco J, Aminalragia Giamini S, Kelaidis N, Psycharis V, Dimoulas A 2016 Appl. Mater. Interfaces 8 23222Google Scholar

    [60]

    Zheng R J 2017 Ph. D. Dissertation (Riverside: University of California)

    [61]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2015 Nat. Phys. 12 92Google Scholar

    [62]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [63]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [64]

    Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P, Wu X, Wu K, Chen L 2022 Nat. Chem. 14 25Google Scholar

    [65]

    Chen F, Wang Y, Su W, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519Google Scholar

    [66]

    Choudhary N, Park J, Hwang J Y, Choi W 2014 ACS Appl. Mater. Interfaces 6 21215Google Scholar

    [67]

    Hsieh Y T, Huang M W, Chang C C, Chen U S, Shih H C 2010 Thin Solid Films 519 1668Google Scholar

    [68]

    Yang M, Guo Y, Wang Q, Xie J 2014 J. Nanopart. Res. 16 2598Google Scholar

    [69]

    Li F, Feng Y, Li Z, Ma C, Qu J, Wu X, Li D, Zhang X, Yang T, He Y, Li H, Hu X, Fan P, Chen Y, Zheng B, Zhu X, Wang X, Duan X, Pan A 2019 Adv. Mater. 31 1901351Google Scholar

    [70]

    Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, Wang X, He H, Tsang S H, Gao W, Suenaga K, Ma F, Yang C, Lu L, Yu T, Teo E H T, Liu G, Liu Z 2017 Nat. Commun. 8 394Google Scholar

    [71]

    Zheliuk O, Lu J, Yang J, Ye J 2017 Phys. Status Solidi Rapid Res. Lett. 11 1700245Google Scholar

    [72]

    Deng Y, Lai Y, Zhao X, Wang X, Zhu C, Huang K, Zhu C, Zhou J, Zeng Q, Duan R, Fu Q, Kang L, Liu Y, Pennycook S J, Wang X R, Liu Z 2020 J. Am. Chem. Soc. 142 2948Google Scholar

    [73]

    Xu C, Song S, Liu Z, Chen L, Wang L, Fan D, Kang N, Ma X, Cheng H M, Ren W 2017 ACS Nano 11 5906Google Scholar

    [74]

    Lin H, Zhu Q, Shu D, Lin D, Xu J, Huang X, Shi W, Xi X, Wang J, Gao L 2019 Nat. Mater. 18 602Google Scholar

    [75]

    Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Chem. Res. 2 36Google Scholar

    [76]

    Wu C R, Chang X R, Chang S W, Chang C E, Wu C H, Lin S Y 2015 J. Phys. D 48 435101Google Scholar

    [77]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457Google Scholar

    [78]

    Liu C, Singh O G, Joensen P, Curzon A E, Frindt R F 1984 Thin Solid Films 113 165Google Scholar

    [79]

    Ohashi Y, Koizumi T, Yoshikawa T, Hironaka T, Shiiki K 1997 Tanso 1997 235Google Scholar

    [80]

    Zhang Y, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803Google Scholar

    [81]

    Wang L 2014 Ph. D. Dissertation (New York: Columbia University)

    [82]

    Wang S, Yu Y, Hao J, Feng Y, Zhu J, Lin Y, Xiang B, Ru H, Pan Y, Gu G 2021 arXiv: 2112.04782

    [83]

    Zeng J, Liu E, Fu Y, Chen Z, Pan C, Wang C, Wang M, Wang Y, Xu K, Cai S, Yan X, Wang Y, Liu X, Wang P, Liang S J, Cui Y, Hwang H Y, Yuan H, Miao F 2018 Nano Lett. 18 1410Google Scholar

    [84]

    Liu F 2021 Prog. Surf. Sci. 96 100626Google Scholar

    [85]

    Li Z, Ren L, Wang S, Huang X, Li Q, Lu Z, Ding S, Deng H, Chen P, Lin J, Hu Y, Liao L, Liu Y 2021 ACS Nano 15 13839Google Scholar

    [86]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [87]

    Lin Z, Wan Z, Song F, Huang B, Jia C, Qian Q, Kang J S, Wu Y, Yan X, Peng L, Wan C, Zhou J, Sofer Z, Shakir I, Almutairi Z, Tolbert S, Pan X, Hu Y, Huang Y, Duan X 2021 Chem 7 1887Google Scholar

    [88]

    Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D, Zeng Z 2022 Nat. Protoc. 17 358Google Scholar

    [89]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [90]

    Muratore C, Voevodin A A, Glavin N R 2019 Thin Solid Films 688 137500Google Scholar

    [91]

    Greene J E 2017 J. Vac. Sci. Technol. A 35 05C204Google Scholar

    [92]

    Liu X, Hersam M C 2018 Adv. Mater. 30 1801586Google Scholar

    [93]

    Tanzi M C, Farè S, Candiani G (Tanzi M C et al. ed) 2019 Foundations of Biomaterials Engineering (Academic Press) pp393–469

    [94]

    Li J, Song P, Zhao J, Vaklinova K, Zhao X, Li Z, Qiu Z, Wang Z, Lin L, Zhao M, Herng T S, Zuo Y, Jonhson W, Yu W, Hai X, Lyu P, Xu H, Yang H, Chen C, Pennycook S J, Ding J, Teng J, Castro Neto A H, Novoselov K S, Lu J 2021 Nat. Mater. 20 181Google Scholar

    [95]

    Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S, Li S C 2022 Nat. Mater. 21 284Google Scholar

    [96]

    Crommie M F, Lutz C P, Eigler D M 1993 Science 262 218Google Scholar

    [97]

    Shao G, Xue X X, Liu X, Zhang D, Jin Y, Wu Y, You B, Lin Y C, Li S, Suenaga K, Wang X, Pan A, Li H, Hong J, Feng Y, Liu S 2020 Chem. Mater. 32 9721Google Scholar

    [98]

    Gariglio S, Reyren N, Caviglia A D, Triscone J M 2009 J. Phys. Condens. Matter 21 164213Google Scholar

    [99]

    Sun W, Wang X, Feng J, Li T, Huan Y, Qiao J, He L, Ma D 2019 Nanotechnology 30 385601Google Scholar

    [100]

    Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A 2015 J. Vac. Sci. Technol. 33 060604Google Scholar

    [101]

    Gfroerer T H 2000 Encyclopedia of Analytical Chemistry (Chichester: Wiley) pp9201–9231

    [102]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [103]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [104]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [105]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. U. S. A 111 6198Google Scholar

    [106]

    Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153Google Scholar

    [107]

    Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, Liu G 2019 Nat. Commun. 10 2044Google Scholar

    [108]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385Google Scholar

    [109]

    Berkdemir A, Gutiérrez H R, Botello Méndez A R, Perea López N, Elías A L, Chia C I, Wang B, Crespi V H, López Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755Google Scholar

    [110]

    Lui C H, Li Z, Chen Z, Klimov P V, Brus L E, Heinz T F 2011 Nano Lett. 11 164Google Scholar

    [111]

    Zhang X, Han W P, Qiao X F, Tan Q H, Wang Y F, Zhang J, Tan P H 2016 Carbon 99 118Google Scholar

    [112]

    Hou Y, Ren X, Fan J, Wang G, Dai Z, Jin C, Wang W, Zhu Y, Zhang S, Liu L, Zhang Z 2020 ACS Appl. Mater. Interfaces 12 40958Google Scholar

    [113]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [114]

    Berezinskiǐ V L 1972 Sov. J. Exp. Theor. Phys. 34 610

    [115]

    Lake B, Rønnow H M, Christensen N B, Aeppli G, Lefmann K, McMorrow D F, Vorderwisch P, Smeibidl P, Mangkorntong N, Sasagawa T, Nohara M, Takagi H, Mason T E 2002 Nature 415 299Google Scholar

    [116]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar

    [117]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [118]

    An L, Cai X, Pei D, Huang M, Wu Z, Zhou Z, Lin J, Ying Z, Ye Z, Feng X, Gao R, Cacho C, Watson M, Chen Y, Wang N 2020 Nanoscale Horiz. 5 1309Google Scholar

    [119]

    Scheurer M S, Samajdar R 2020 Phys. Rev. Res. 2 033062Google Scholar

    [120]

    Nishino T, Yamada E, Kawabe U 1986 Phys. Rev. B 33 2042Google Scholar

    [121]

    Tal O, Rosenwaks Y, Preezant Y, Tessler N, Chan C K, Kahn A 2005 Phys. Rev. Lett. 95 256405Google Scholar

    [122]

    Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001Google Scholar

    [123]

    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136Google Scholar

    [124]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [125]

    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855Google Scholar

    [126]

    Dhoot A S, Yuen J D, Heeney M, McCulloch I, Moses D, Heeger A J 2006 Proc. Natl. Acad. Sci. U. S. A. 103 11834Google Scholar

    [127]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845Google Scholar

    [128]

    Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y 2008 Appl. Phys. Lett. 92 242107Google Scholar

    [129]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [130]

    Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y 2009 Adv. Funct. Mater. 19 1046Google Scholar

    [131]

    Lin Z, Taberna P L, Simon P 2016 Electrochim. Acta 206 446Google Scholar

    [132]

    Han S, Song C L, Ma X C, Xue Q K 2021 C. R. Phys. 22 163Google Scholar

    [133]

    He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J, Sou I K 2014 Nat. Commun. 5 4247Google Scholar

    [134]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969Google Scholar

    [135]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245Google Scholar

    [136]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nat. Phys. 6 104Google Scholar

    [137]

    Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98 220504Google Scholar

    [138]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 590 249Google Scholar

    [139]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [140]

    Cao Y, Rodan Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo Herrero P 2021 Science 372 264Google Scholar

    [141]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 592 43Google Scholar

  • [1] 王颖, 殳蕾. μSR实验进展与缪子源发展趋势. 物理学报, 2024, 73(19): 197601. doi: 10.7498/aps.73.20240940
    [2] 殷嘉鑫, 王强华. 超导能隙振荡: 到底来自配对密度波还是拆对散射?. 物理学报, 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [3] 赵宗阳, 李铭, 周涛. 石墨烯类超导体的单磁性杂质效应. 物理学报, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [4] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221046
    [5] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, 2022, 71(21): 218101. doi: 10.7498/aps.71.20221046
    [6] 奉熙林, 蒋坤, 胡江平. 钒基笼目超导体. 物理学报, 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [7] 樊金泽, 方展伯, 罗超杰, 张汇. 低维材料中的电荷密度波. 物理学报, 2022, 71(12): 127103. doi: 10.7498/aps.71.20220052
    [8] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器. 物理学报, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [9] 吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨. 氮化铌纳米线光学特性. 物理学报, 2018, 67(24): 248501. doi: 10.7498/aps.67.20181646
    [10] 杨桦, 冯中沛, 林泽丰, 胡卫, 秦明阳, 朱北沂, 袁洁, 金魁. 高质量FeSe单晶薄膜的制备及相关性能表征. 物理学报, 2018, 67(20): 207416. doi: 10.7498/aps.67.20180940
    [11] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [13] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [14] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟. 物理学报, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [15] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [16] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解. 物理学报, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [17] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源. 物理学报, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [18] 杨鹏飞. 一类带限定变换的二阶耦合线性微分方程组的解析解. 物理学报, 2006, 55(11): 5579-5584. doi: 10.7498/aps.55.5579
    [19] 李 勇, 闻 平, 刘振兴, 景秀年, 王万录, 白海洋. 块体金属玻璃Zr46.75Ti8.25Cu7.5Ni10Be27.5的超导与负电阻温度系数. 物理学报, 2004, 53(3): 844-849. doi: 10.7498/aps.53.844
    [20] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
计量
  • 文章访问数:  7102
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-08-18
  • 上网日期:  2022-09-09
  • 刊出日期:  2022-09-20

/

返回文章
返回