-
低维材料的铁电性一直是凝聚态物理和材料科学领域的研究热点, 在新型纳米电子器件的设计和应用等方面有重要的潜在应用和学术价值. 本文基于密度泛函理论的第一性计算, 以实验上已经验证的二维铁电材料In2Se3薄膜为出发点, 研究了二维In2Se3薄膜的掺杂效应和In2Se3纳米带的铁电性. 结果发现铁电性和金属性在静电掺杂的In2Se3薄膜中可以稳定共存, 且电子掺杂会同时增强面内和面外极化, 空穴掺杂可以增强面外极化, 但抑制面内极化, 从原子结构畸变和电子结构等角度详细解释了载流子掺杂对薄膜面内极化和面外极化的影响以及物理机制. 针对In2Se3纳米带的研究, 发现一维铁电性可以在In2Se3纳米线中存在, 计算并给出了纳米带的局域极化分布和带隙, 拟合了带隙和纳米带宽度之间满足
$E_{\text{g}}^{{\text{NR}}} \text- 1/{w^2}$ 标度关系. 以期此研究可为拓宽二维铁电薄膜及其纳米结构的应用提供理论指导.Ferroelectricity and nanostructure in low-dimensional material are a research hotspot in the condensed matter physics and material science, The low-dimensional material is significant for the application and desig of nano-electronic devices. Based on the density functional theory, the In2Se3 monolayer, whose two-dimensional ferroelectricity has already been confirmed in experiment, is selected, and the ferroelectricity in the doped film and its nanoribbons are investigated. It is found that the ferroelectricity and the conductivity can coexist in the doped monolayer, and the electron doping enhances both the in-plane polarization (PIP) and the out-of-plane polarization (POOP), while the PIP is enhanced and POOP is depressed in the case of hole doping. The mechanism of the variation of polarization in the doped film is discussed on the basis of atomic distortions and electronic structures. As the In2Se3 nanoribbons are concerned, the one-dimensional ferroelectricity can be found in the In2Se3 nanowire, and the local polarization distribution within In2Se3 nanoribbons and its band gap are calculated and discussed. Furthermore, the scaling law between the band gap and the width of nanoribbon is obtained by fitting the numerical results. It is expected that our study can broaden the application scope of 2D ferroelectric films and its nanostructures.-
Keywords:
- In2Se3 monolayer /
- ferroelectricity /
- doping effect /
- nanoribbon
[1] Junquera J, Ghosez P 2003 Nature 422 506Google Scholar
[2] 胡婷, 阚二军 2018 物理学报 67 157701Google Scholar
Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar
[3] Hu T, Kan E J 2019 WIREs Comput. Mol. Sci. 9 e1409Google Scholar
[4] Wu M H, Puru J 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar
[5] Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2019 Adv. Electron. Mater. 6 1900818Google Scholar
[6] Yuan Z L, Sun Y, Wang D, Chen K Q, Tang L M 2021 J. Phys. Condens. Matter 33 403003Google Scholar
[7] Shang J, Tang X, Kou L Z 2020 WIREs Comput. Mol. Sci. 11 e1496Google Scholar
[8] Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar
[9] Qiao H, Wang C, Woo Seok C, Min Hyuk P, Yunseok K 2021 Mater. Sci. Eng. R 145 100622Google Scholar
[10] 吴银忠, 黄鸿飞, 卢美辰, 孙智征 2020 苏州科技大学学报 (自然科学版) 37 1Google Scholar
Wu Y Z, Huang H F, Lu M C, Sun Z Z 2020 J. Suzhou Univ. of Sci. Tech. (Natural Science Edition) 37 1Google Scholar
[11] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar
[12] Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar
[13] Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar
[14] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar
[15] Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar
[16] Cui C J, Hu W J, Yan X G, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar
[17] Xue F, Zhang J W, Hu W J, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S H, Zhang J L, He J H, Chang W H, Wang Z L, Zhang X X, Li L J 2018 ACS Nano 12 4976Google Scholar
[18] Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar
[19] Zhai B, Cheng R, Yao W, Yin L, Shen C, Xia C, He J 2021 Phys. Rev. B 103 214114Google Scholar
[20] Zhou B, Gong S J, Jiang K, Xu L P, Zhu L Q, Shang L Y, Li Y W, Hu Z G, Chu J H 2020 J. Phys. Condens. Matter 32 055703Google Scholar
[21] Yang H, Xiao M Q, Cui Y, Pan L F, Zhao K, Wei Z M 2019 Science China Information Sciences 62 220404Google Scholar
[22] Sun W, Wang W X, Li H, Zhang G B, Chen D, Wang J L, Cheng Z X 2020 Nat. Commun. 11 5930Google Scholar
[23] Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar
[24] Mukherjee S, Koren E 2022 Isr. J. Chem. 62 e202100112Google Scholar
[25] Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar
[26] Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar
[27] Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Neto A H C, Loh K P 2018 Nano Lett. 18 6340Google Scholar
[28] Edelstein V M 2011 Phys. Rev. B 83 113109Google Scholar
[29] Wijethunge D, Zhang L, Du A J 2021 J. Mater. Chem. C 9 11343Google Scholar
[30] Puggioni D, Rondinelli J M 2014 Nat. Commun. 5 3432Google Scholar
[31] Puggioni D, Giovannetti G, Capone M, Rondinelli J M 2015 Phys. Rev. Lett. 115 087202Google Scholar
[32] Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 532
[33] Shi Y G, Guo Y F, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N L, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024Google Scholar
[34] Xi X, Berger H, Forro L, Shan L and Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar
[35] Chen Z Y, Yuan H T, Xie Y W, Lu D, Inoue H, Hikita Y, Bell C and Hwang H Y 2016 Nano Lett. 16 6130Google Scholar
[36] Wang Y, Liu X H, Burton J D, Jaswal S S, Tsymbal E Y 2012 Phys. Rev. Lett. 109 247601Google Scholar
[37] He X, Jin K J 2016 Phys. Rev. B 94 224107Google Scholar
[38] Xia C L, Chen Y, Chen H H 2019 Phys. Rev. Mater. 3 054405Google Scholar
[39] Xu T, Zhang J T, Zhu Y Q, Wang J, Shimada T, Kitamura T, Zhang T Y 2020 Nanoscale Horiz. 5 1400Google Scholar
[40] Yao C J, Huang H F, Yao Y, Wu Y Z, Hao X 2021 J. Phys. Condens. Matter 33 145302Google Scholar
[41] Shimada T, Minaguro K, Xu T, Wang J, Kitamura T 2020 Nanomaterials 10 732Google Scholar
[42] Zhang J J, Guan J, Dong S, Yakobson B I 2019 J. Am. Chem. Soc. 141 15040Google Scholar
[43] Fan Z Q, Jiang X W, Wei Z M, Luo J W, Li S S 2017 J. Phys. Chem. C 121 14373Google Scholar
[44] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar
[45] Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar
[46] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar
[47] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar
[48] KingSmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar
[49] Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar
[50] Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys. Condens. Matter 32 105501Google Scholar
[51] Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618Google Scholar
[52] Zhu L Y, Lu Y, Wang L 2020 J. Appl. Phys. 127 014101Google Scholar
[53] Soleimani M, Pourfath M 2020 Nanoscale 12 22688Google Scholar
[54] Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar
[55] Zhao X Y, Wei C M, Yang L, Chou M Y 2004 Phys. Rev. Lett. 92 236805Google Scholar
-
图 1 α-In2Se3单层薄膜结构示意图, 其中PIP表示面内极化, POOP表示面外极化, dr和dl表示铁电相的中间层Se2原子在面外和面内方向偏移顺电相的位移
Fig. 1. Structure of ferroelectric α-In2Se3 monolayer, where PIP stands for the in-plane polarization, and POOP denotes the out-of-plane polarization, dr and dl are the distortions of Se2 atom along the out-of-plane and in-plane directions, respectively.
图 4 掺杂In2Se3薄膜的电子态密度轨道投影图v(a)未掺杂, (b)电子掺杂ne = 0.3, (c)空穴掺杂nh = 0.3, 图中垂直的短划线表示费米面的位置, (b)和(c)中插图分别是导带底和价带顶的DOS放大图
Fig. 4. Projected-DOS of doped In2Se3 monolayers: (a)Non-doping; (b) electron doping ne = 0.3; (c) hole doping nh = 0.3, and the dashed line indicates the Fermi level, the inserts in (b) and (c) are the enlarged images near the CBM and VBM, respectively.
图 7 纳米带极化分布图(纳米带宽度分别为 1 u. c., 2 u. c., 3 u. c. 和 4 u. c.), 其中平面内极化大小和方向用矢量表示. 垂直平面的极化大小用颜色来表示, 且负号代表面外极化方向朝下, 正号代表面外极化朝上
Fig. 7. Distribution of polarization within In2Se3 nanoribbon with different width (w = 1 u.c., 2 u.c., 3 u.c. and 4 u.c.), where the magnitude and the direction of PIP are indicated by vector, the magnitude of POOP is described by different color, and the positive value of POOP denotes the up direction and negative value denotes the down direction.
-
[1] Junquera J, Ghosez P 2003 Nature 422 506Google Scholar
[2] 胡婷, 阚二军 2018 物理学报 67 157701Google Scholar
Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar
[3] Hu T, Kan E J 2019 WIREs Comput. Mol. Sci. 9 e1409Google Scholar
[4] Wu M H, Puru J 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar
[5] Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2019 Adv. Electron. Mater. 6 1900818Google Scholar
[6] Yuan Z L, Sun Y, Wang D, Chen K Q, Tang L M 2021 J. Phys. Condens. Matter 33 403003Google Scholar
[7] Shang J, Tang X, Kou L Z 2020 WIREs Comput. Mol. Sci. 11 e1496Google Scholar
[8] Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar
[9] Qiao H, Wang C, Woo Seok C, Min Hyuk P, Yunseok K 2021 Mater. Sci. Eng. R 145 100622Google Scholar
[10] 吴银忠, 黄鸿飞, 卢美辰, 孙智征 2020 苏州科技大学学报 (自然科学版) 37 1Google Scholar
Wu Y Z, Huang H F, Lu M C, Sun Z Z 2020 J. Suzhou Univ. of Sci. Tech. (Natural Science Edition) 37 1Google Scholar
[11] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar
[12] Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar
[13] Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar
[14] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar
[15] Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar
[16] Cui C J, Hu W J, Yan X G, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar
[17] Xue F, Zhang J W, Hu W J, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S H, Zhang J L, He J H, Chang W H, Wang Z L, Zhang X X, Li L J 2018 ACS Nano 12 4976Google Scholar
[18] Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar
[19] Zhai B, Cheng R, Yao W, Yin L, Shen C, Xia C, He J 2021 Phys. Rev. B 103 214114Google Scholar
[20] Zhou B, Gong S J, Jiang K, Xu L P, Zhu L Q, Shang L Y, Li Y W, Hu Z G, Chu J H 2020 J. Phys. Condens. Matter 32 055703Google Scholar
[21] Yang H, Xiao M Q, Cui Y, Pan L F, Zhao K, Wei Z M 2019 Science China Information Sciences 62 220404Google Scholar
[22] Sun W, Wang W X, Li H, Zhang G B, Chen D, Wang J L, Cheng Z X 2020 Nat. Commun. 11 5930Google Scholar
[23] Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar
[24] Mukherjee S, Koren E 2022 Isr. J. Chem. 62 e202100112Google Scholar
[25] Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar
[26] Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar
[27] Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Neto A H C, Loh K P 2018 Nano Lett. 18 6340Google Scholar
[28] Edelstein V M 2011 Phys. Rev. B 83 113109Google Scholar
[29] Wijethunge D, Zhang L, Du A J 2021 J. Mater. Chem. C 9 11343Google Scholar
[30] Puggioni D, Rondinelli J M 2014 Nat. Commun. 5 3432Google Scholar
[31] Puggioni D, Giovannetti G, Capone M, Rondinelli J M 2015 Phys. Rev. Lett. 115 087202Google Scholar
[32] Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 532
[33] Shi Y G, Guo Y F, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N L, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024Google Scholar
[34] Xi X, Berger H, Forro L, Shan L and Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar
[35] Chen Z Y, Yuan H T, Xie Y W, Lu D, Inoue H, Hikita Y, Bell C and Hwang H Y 2016 Nano Lett. 16 6130Google Scholar
[36] Wang Y, Liu X H, Burton J D, Jaswal S S, Tsymbal E Y 2012 Phys. Rev. Lett. 109 247601Google Scholar
[37] He X, Jin K J 2016 Phys. Rev. B 94 224107Google Scholar
[38] Xia C L, Chen Y, Chen H H 2019 Phys. Rev. Mater. 3 054405Google Scholar
[39] Xu T, Zhang J T, Zhu Y Q, Wang J, Shimada T, Kitamura T, Zhang T Y 2020 Nanoscale Horiz. 5 1400Google Scholar
[40] Yao C J, Huang H F, Yao Y, Wu Y Z, Hao X 2021 J. Phys. Condens. Matter 33 145302Google Scholar
[41] Shimada T, Minaguro K, Xu T, Wang J, Kitamura T 2020 Nanomaterials 10 732Google Scholar
[42] Zhang J J, Guan J, Dong S, Yakobson B I 2019 J. Am. Chem. Soc. 141 15040Google Scholar
[43] Fan Z Q, Jiang X W, Wei Z M, Luo J W, Li S S 2017 J. Phys. Chem. C 121 14373Google Scholar
[44] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar
[45] Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar
[46] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar
[47] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar
[48] KingSmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar
[49] Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar
[50] Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys. Condens. Matter 32 105501Google Scholar
[51] Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618Google Scholar
[52] Zhu L Y, Lu Y, Wang L 2020 J. Appl. Phys. 127 014101Google Scholar
[53] Soleimani M, Pourfath M 2020 Nanoscale 12 22688Google Scholar
[54] Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar
[55] Zhao X Y, Wei C M, Yang L, Chou M Y 2004 Phys. Rev. Lett. 92 236805Google Scholar
计量
- 文章访问数: 4828
- PDF下载量: 123
- 被引次数: 0