-
水分子吸收光谱参数是遥感探测、行星观测应用领域所需的关键基础科学数据. 基于窄线宽外腔半导体激光器和长程吸收池, 测量了室温下9332—722 cm–1波段内, CO2加宽的18条水分子的吸收谱线. 分别使用Voigt线型和quadratic speed-dependent Voigt线型对吸收光谱数据进行拟合, 并获得了这些谱线的CO2加宽系数, quadratic speed-dependent Voigt线型表现出更好的拟合效果. 与HITRAN2020数据库该波段空气加宽系数进行了对比, 两种线型反演获得的水分子CO2加宽系数与空气加宽系数之比的均值分别为1.327和1.454, 验证了利用水分子的空气加宽系数估算CO2加宽系数的方法存在可靠性. 本研究可为近红外波段的火星、金星等大气结构探测技术及相关研究提供可供参考的实测光谱参数数据.The absorption spectral parameters of water vapor molecules are the key basic scientific data for the remote sensing detection and the planetary observation applications. Based on a narrow line-width external cavity diode laser and a long-path absorption cell, 18 absorption spectral lines of CO2-broadened water vapor molecules in a 9332–9722 cm–1 range at room temperature are measured. To obtain the CO2-broadened water vapor molecule coefficients, the Voigt profile and the quadratic speed-dependent Voigt profile are used to fit the absorption spectrum data. The quadratic speed-dependent Voigt profile shows better fitting capability. Comparing with the air-broadened coefficients of the corresponding region from the HITRAN2020 database, the mean ratios of the CO2-broadened coefficients of water vapor molecules and the air-broadened coefficients obtained from the two models of the line shape are 1.327 and 1.454, respectively, which verifies that the method of estimating the CO2-broadened coefficient by the air-broadened coefficient of water vapor molecules has certain reliability. This study can provide reference data of measured spectral parameters for the detection technology and related research of atmospheric structures of Mars and Venus in the near-infrared region.
-
Keywords:
- water vapor molecule /
- near infrared spectrum /
- CO2-broadened coefficients /
- profile
[1] Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Heyden P V 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119
[2] Antony B K, Neshyba S, Gamache R R 2007 J. Quant. Spectrosc. Radiat. Transfer 1 148
[3] 郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬 2021 物理学报 70 163301Google Scholar
Zheng J J, Zhu W Y, Liu Q, Ma H L, Liu K, Qian X M, Chen J, Yang T 2021 Acta Phys. Sin. 70 163301Google Scholar
[4] 马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663
Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Electron. 36 663
[5] Jacquemart D, Gamache R, Rothman L S 2004 J. Quant. Spectrosc. Radiat. Transfer 96 205
[6] Sironneau V T, Hodges J T 2015 J. Quant. Spectrosc. Radiat. Transfer 152 1Google Scholar
[7] Brown L R, Toth R A, Dulick M 2002 J. Quant. Spectrosc. Radiat. Transfer 212 57
[8] Sagawa H, Mendrok J, Seta T, Hoshina H, Baron P, Suzuki K, Hosako I, Otani C, Hartogh P, Kasai Y 2009 J. Quant. Spectrosc. Radiat. Transfer 18 2027
[9] 高晓明, 黄伟, 邓伦华, 邵杰, 樊宏, 曹振松, 袁怿谦, 张为俊, 龚知本 2006 光学学报 26 5Google Scholar
Gao X M, Huang W, Deng L H, Shao J, Fan H, Cao Z S, Yuan Y Q, Zhang W J, Gong Z B 2006 Acta Opt. Sin. 26 5Google Scholar
[10] Chamberlain S, Bailey J, Crisp D, Meadows V 2013 Icarus 1 364
[11] Brown L R, Humphrey C M, Gamache R R 2007 J. Mol. Spectrosc. 246 1Google Scholar
[12] Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 187 472Google Scholar
[13] Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 203 158Google Scholar
[14] Borkov Y, Petrova T M, Solodov A M, Solodov A A 2018 J. Mol. Spectrosc. 344 39Google Scholar
[15] Lu Y, Li X F, Liu A W, Hu S M 2014 Chin. J. Chem. Phys. 27 1Google Scholar
[16] Régalia L, Cousin E, Gamache R R, Vispoel B, Robert S, Thomas X 2019 J. Quant. Spectrosc. Radiat. Transfer 231 126Google Scholar
[17] Bézard B, Fedorova A, Bertaux J-L, Rodin A, Korablev O 2011 Icarus 1 173
[18] Zheng J, Ma H, Liu Q, Qian X, Zhu W, Cao Z, Chen J, Yang T, Xu Q 2022 Microwave Opt. Technol. Lett.Google Scholar
[19] Gordon I E, Rothman L S, hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar
[20] Howard J N, Burch D E, Williams D 1956 J. Opt. Soc. Am. 46 242Google Scholar
[21] Pollack J B, Dalton J, Grinspoon D, et al. 1993 Icarus 103 1Google Scholar
-
图 3 (a) 9412.790 cm–1处, 不同压力下的测量点及拟合结果; (b) 使用voigt线型拟合吸收光谱得到的残差; (c) 使用qSDV线型拟合吸收光谱得到的残差
Fig. 3. (a) Measurement points and fitting results at 9412.790 cm–1 under different pressures; (b) residuals obtained by fitting absorption spectra using Voigt profile; (c) residuals obtained by fitting the absorption spectrum using the qSDV profile.
图 5 使用Voigt线型(a)和qSDV线型(b)得到的水分子的CO2加宽系数与HITRAN2020数据库中水分子的空气加宽系数之比; (c) 使用Voigt线型得到的水分子的CO2加宽系数与使用qSDV线型得到的水分子的CO2加宽系数之比
Fig. 5. The ratios of CO2-broadened coefficients of water vapor obtained by using the Voigt profile (a) and the qSDV profile (b) to the air broadening coefficients of water vapor in the HITRAN2020 database; (c) the ratios of CO2-broadened coefficients of water vapor obtained by using the Voigt profile to the coefficients obtained by using the qSDV profile.
表 1 CO2压力加宽的水分子谱线加宽参数(括号内数字为拟合误差)
Table 1. Line parameters of water vapor broadened by the pressure of carbon dioxide (Numbers in brackets are fitting errors)
线位置
$ {\nu }_{0}/{\rm cm}^{-1}$CO2加宽系数$/({\mathrm{c}\mathrm{m} }^{-1}{\cdot}{\mathrm{a}\mathrm{t}\mathrm{m} }^{-1})$ 空气加宽系数/
$({\mathrm{c}\mathrm{m} }^{-1}{\cdot}{\mathrm{a}\mathrm{t}\mathrm{m} }^{-1})$比值 VP qSDVP $ {\gamma }_{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N}}^{\mathrm{A}\mathrm{I}\mathrm{R}} $ $\dfrac{{\gamma }_{1}^{ {\mathrm{C}\mathrm{O} }_{2} }}{\gamma _{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N} }^{\mathrm{A}\mathrm{I}\mathrm{R} }}\Big/{\text{%} }$ $\dfrac{{\gamma }_{0}^{ {\mathrm{C}\mathrm{O} }_{2} }}{\gamma _{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N} }^{\mathrm{A}\mathrm{I}\mathrm{R} }}\Big/{\text{%} }$ $\dfrac{{\gamma }_{0}^{ {\mathrm{C}\mathrm{O} }_{2} }}{{\gamma }_{\mathrm{V}\mathrm{P} }^{ {\mathrm{C}\mathrm{O} }_{2} }}\Big/{\text{%} }$ $ {\gamma }_{1}^{{\mathrm{C}\mathrm{O}}_{2}} $ $ {\gamma }_{0}^{{\mathrm{C}\mathrm{O}}_{2}} $ $ {\gamma }_{2}^{{\mathrm{C}\mathrm{O}}_{2}} $ 9332.623 0.079(0.42) 0.093(1.86) 0.020(6.8) 0.0483 1.632 1.917 1.175 9335.691 0.107(0.58) 0.111(2.76) 0.013(18.7) 0.0772 1.391 1.441 1.036 9339.709 0.083(0.74) 0.100(4.95) 0.007(20.0) 0.0732 1.135 1.361 1.199 9344.263 0.084(0.69) 0.097(2.51) 0.016(7.07) 0.0573 1.468 1.685 1.148 9346.912 0.095(0.66) 0.102(1.61) 0.026(6.92) 0.0762 1.247 1.341 1.076 9351.149 0.072(0.18) 0.079(1.37) 0.005(9.63) 0.0623 1.153 1.274 1.105 9351.509 0.082(1.14) 0.092(4.00) 0.004(12.05) 0.0804 1.014 1.150 1.134 9366.591 0.084(0.18) 0.085(1.27) 0.018(17.27) 0.0602 1.394 1.418 1.017 9366.781 0.082(0.40) 0.089(2.40) 0.089(2.40) 0.0565 1.451 1.568 1.081 9388.751 0.085(0.96) 0.094(2.58) 0.015(9.77) 0.0637 1.328 1.472 1.108 9388.968 0.096(0.56) 0.102(3.35) 0.069(18.15) 0.0791 1.212 1.294 1.067 9409.130 0.086(0.41) 0.089(1.92) 0.010(12.02) 0.0713 1.205 1.245 1.034 9412.790 0.122(1.30) 0.133(3.37) 0.019(6.05) 0.0817 1.489 1.625 1.092 9676.881 0.068(0.32) 0.073(1.60) 0.016(11.04) 0.0473 1.446 1.552 1.073 9694.811 0.083(0.28) 0.098(2.41) 0.031(9.83) 0.0628 1.323 1.560 1.180 9713.959 0.094(0.69) 0.099(2.72) 0.024(11.35) 0.0726 1.294 1.370 1.059 9720.277 0.114(0.51) 0.118(3.86) 0.027(7.39) 0.0831 1.367 1.421 1.040 9721.806 0.094(0.20) 0.104(1.15) 0.024(8.58) 0.0704 1.338 1.477 1.104 -
[1] Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Heyden P V 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119
[2] Antony B K, Neshyba S, Gamache R R 2007 J. Quant. Spectrosc. Radiat. Transfer 1 148
[3] 郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬 2021 物理学报 70 163301Google Scholar
Zheng J J, Zhu W Y, Liu Q, Ma H L, Liu K, Qian X M, Chen J, Yang T 2021 Acta Phys. Sin. 70 163301Google Scholar
[4] 马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663
Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Electron. 36 663
[5] Jacquemart D, Gamache R, Rothman L S 2004 J. Quant. Spectrosc. Radiat. Transfer 96 205
[6] Sironneau V T, Hodges J T 2015 J. Quant. Spectrosc. Radiat. Transfer 152 1Google Scholar
[7] Brown L R, Toth R A, Dulick M 2002 J. Quant. Spectrosc. Radiat. Transfer 212 57
[8] Sagawa H, Mendrok J, Seta T, Hoshina H, Baron P, Suzuki K, Hosako I, Otani C, Hartogh P, Kasai Y 2009 J. Quant. Spectrosc. Radiat. Transfer 18 2027
[9] 高晓明, 黄伟, 邓伦华, 邵杰, 樊宏, 曹振松, 袁怿谦, 张为俊, 龚知本 2006 光学学报 26 5Google Scholar
Gao X M, Huang W, Deng L H, Shao J, Fan H, Cao Z S, Yuan Y Q, Zhang W J, Gong Z B 2006 Acta Opt. Sin. 26 5Google Scholar
[10] Chamberlain S, Bailey J, Crisp D, Meadows V 2013 Icarus 1 364
[11] Brown L R, Humphrey C M, Gamache R R 2007 J. Mol. Spectrosc. 246 1Google Scholar
[12] Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 187 472Google Scholar
[13] Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 203 158Google Scholar
[14] Borkov Y, Petrova T M, Solodov A M, Solodov A A 2018 J. Mol. Spectrosc. 344 39Google Scholar
[15] Lu Y, Li X F, Liu A W, Hu S M 2014 Chin. J. Chem. Phys. 27 1Google Scholar
[16] Régalia L, Cousin E, Gamache R R, Vispoel B, Robert S, Thomas X 2019 J. Quant. Spectrosc. Radiat. Transfer 231 126Google Scholar
[17] Bézard B, Fedorova A, Bertaux J-L, Rodin A, Korablev O 2011 Icarus 1 173
[18] Zheng J, Ma H, Liu Q, Qian X, Zhu W, Cao Z, Chen J, Yang T, Xu Q 2022 Microwave Opt. Technol. Lett.Google Scholar
[19] Gordon I E, Rothman L S, hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar
[20] Howard J N, Burch D E, Williams D 1956 J. Opt. Soc. Am. 46 242Google Scholar
[21] Pollack J B, Dalton J, Grinspoon D, et al. 1993 Icarus 103 1Google Scholar
计量
- 文章访问数: 4161
- PDF下载量: 51
- 被引次数: 0