搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.1 μm波段水分子的CO2加宽系数

杨韬 钱仙妹 马宏亮 刘强 朱文越 郑健捷 陈杰 徐秋怡

引用本文:
Citation:

1.1 μm波段水分子的CO2加宽系数

杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡

CO2-broadened coefficients of water vapor molecule in 1.1 μm band

Yang Tao, Qian Xian-Mei, Ma Hong-Liang, Liu Qiang, Zhu Wen-Yue, Zheng Jian-Jie, Chen Jie, Xu Qiu-Yi
PDF
HTML
导出引用
  • 水分子吸收光谱参数是遥感探测、行星观测应用领域所需的关键基础科学数据. 基于窄线宽外腔半导体激光器和长程吸收池, 测量了室温下9332—722 cm–1波段内, CO2加宽的18条水分子的吸收谱线. 分别使用Voigt线型和quadratic speed-dependent Voigt线型对吸收光谱数据进行拟合, 并获得了这些谱线的CO2加宽系数, quadratic speed-dependent Voigt线型表现出更好的拟合效果. 与HITRAN2020数据库该波段空气加宽系数进行了对比, 两种线型反演获得的水分子CO2加宽系数与空气加宽系数之比的均值分别为1.327和1.454, 验证了利用水分子的空气加宽系数估算CO2加宽系数的方法存在可靠性. 本研究可为近红外波段的火星、金星等大气结构探测技术及相关研究提供可供参考的实测光谱参数数据.
    The absorption spectral parameters of water vapor molecules are the key basic scientific data for the remote sensing detection and the planetary observation applications. Based on a narrow line-width external cavity diode laser and a long-path absorption cell, 18 absorption spectral lines of CO2-broadened water vapor molecules in a 9332–9722 cm–1 range at room temperature are measured. To obtain the CO2-broadened water vapor molecule coefficients, the Voigt profile and the quadratic speed-dependent Voigt profile are used to fit the absorption spectrum data. The quadratic speed-dependent Voigt profile shows better fitting capability. Comparing with the air-broadened coefficients of the corresponding region from the HITRAN2020 database, the mean ratios of the CO2-broadened coefficients of water vapor molecules and the air-broadened coefficients obtained from the two models of the line shape are 1.327 and 1.454, respectively, which verifies that the method of estimating the CO2-broadened coefficient by the air-broadened coefficient of water vapor molecules has certain reliability. This study can provide reference data of measured spectral parameters for the detection technology and related research of atmospheric structures of Mars and Venus in the near-infrared region.
      通信作者: 刘强, liuq@aiofm.ac.cn
    • 基金项目: 国家自然科学基金 (批准号: 41805014)、中国科学院国防科技重点实验室基金(批准号: CXJJ-21S028)、中国科学院战略性先导科技专项 (批准号: XDA17010104)、科工局国防基础科研计划(批准号: JCKY2019130D021)、安徽省高校优秀青年人才支持计划 (重点项目)(批准号: gxyqZD2020032)和中国科学院大气光学重点实验室开放课题基金 (批准号: JJ-19-01) 资助的课题.
      Corresponding author: Liu Qiang, liuq@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41805014), the Foundation of Key Laboratory of Science and Technology Innovation of Chinese Academy of Sciences (Grant No. CXJJ-21S028), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010104), the National Defense Basic Scientific Research Program of Bureau of Science, Technology and Industry of China (Grant No. JCKY2019130D021), the Key Program of the Youth Talent Support Plan in Universities of Anhui Province, China (Grant No. gxyqZD2020032), and the Open Fund of Key Laboratory of Atmospheric Optics, Chinese Academy of Sciences (Grant No. JJ-19-01).
    [1]

    Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Heyden P V 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119

    [2]

    Antony B K, Neshyba S, Gamache R R 2007 J. Quant. Spectrosc. Radiat. Transfer 1 148

    [3]

    郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬 2021 物理学报 70 163301Google Scholar

    Zheng J J, Zhu W Y, Liu Q, Ma H L, Liu K, Qian X M, Chen J, Yang T 2021 Acta Phys. Sin. 70 163301Google Scholar

    [4]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Electron. 36 663

    [5]

    Jacquemart D, Gamache R, Rothman L S 2004 J. Quant. Spectrosc. Radiat. Transfer 96 205

    [6]

    Sironneau V T, Hodges J T 2015 J. Quant. Spectrosc. Radiat. Transfer 152 1Google Scholar

    [7]

    Brown L R, Toth R A, Dulick M 2002 J. Quant. Spectrosc. Radiat. Transfer 212 57

    [8]

    Sagawa H, Mendrok J, Seta T, Hoshina H, Baron P, Suzuki K, Hosako I, Otani C, Hartogh P, Kasai Y 2009 J. Quant. Spectrosc. Radiat. Transfer 18 2027

    [9]

    高晓明, 黄伟, 邓伦华, 邵杰, 樊宏, 曹振松, 袁怿谦, 张为俊, 龚知本 2006 光学学报 26 5Google Scholar

    Gao X M, Huang W, Deng L H, Shao J, Fan H, Cao Z S, Yuan Y Q, Zhang W J, Gong Z B 2006 Acta Opt. Sin. 26 5Google Scholar

    [10]

    Chamberlain S, Bailey J, Crisp D, Meadows V 2013 Icarus 1 364

    [11]

    Brown L R, Humphrey C M, Gamache R R 2007 J. Mol. Spectrosc. 246 1Google Scholar

    [12]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 187 472Google Scholar

    [13]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 203 158Google Scholar

    [14]

    Borkov Y, Petrova T M, Solodov A M, Solodov A A 2018 J. Mol. Spectrosc. 344 39Google Scholar

    [15]

    Lu Y, Li X F, Liu A W, Hu S M 2014 Chin. J. Chem. Phys. 27 1Google Scholar

    [16]

    Régalia L, Cousin E, Gamache R R, Vispoel B, Robert S, Thomas X 2019 J. Quant. Spectrosc. Radiat. Transfer 231 126Google Scholar

    [17]

    Bézard B, Fedorova A, Bertaux J-L, Rodin A, Korablev O 2011 Icarus 1 173

    [18]

    Zheng J, Ma H, Liu Q, Qian X, Zhu W, Cao Z, Chen J, Yang T, Xu Q 2022 Microwave Opt. Technol. Lett.Google Scholar

    [19]

    Gordon I E, Rothman L S, hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [20]

    Howard J N, Burch D E, Williams D 1956 J. Opt. Soc. Am. 46 242Google Scholar

    [21]

    Pollack J B, Dalton J, Grinspoon D, et al. 1993 Icarus 103 1Google Scholar

  • 图 1  水分子吸收光谱实验装置

    Fig. 1.  The experimental setup of water vapor absorption spectrum.

    图 2  吸收信号对比 (a) 光束4引入前获得的水分子吸收信号; (b) 光束4引入后获得的水分子吸收信号; (c) F-P 标准具纵模信号

    Fig. 2.  Comparison of acquired signals: (a) Water vapor absorption signals before beam 4 introduced; (b) water vapor absorption signals after beam 4 introduced; (c) the longitudinal mode signals of F-P etalon.

    图 3  (a) 9412.790 cm–1处, 不同压力下的测量点及拟合结果; (b) 使用voigt线型拟合吸收光谱得到的残差; (c) 使用qSDV线型拟合吸收光谱得到的残差

    Fig. 3.  (a) Measurement points and fitting results at 9412.790 cm–1 under different pressures; (b) residuals obtained by fitting absorption spectra using Voigt profile; (c) residuals obtained by fitting the absorption spectrum using the qSDV profile.

    图 4  Voigt线型(a)和qSDV线型(b)拟合后, 不同气压下的碰撞展宽值(1 atm = 1.01 × 105 Pa)

    Fig. 4.  Collision line width under different pressures obtained by Voigt profile (a) and qSDV profile (b) (1 atm = 1.01 × 105 Pa).

    图 5  使用Voigt线型(a)和qSDV线型(b)得到的水分子的CO2加宽系数与HITRAN2020数据库中水分子的空气加宽系数之比; (c) 使用Voigt线型得到的水分子的CO2加宽系数与使用qSDV线型得到的水分子的CO2加宽系数之比

    Fig. 5.  The ratios of CO2-broadened coefficients of water vapor obtained by using the Voigt profile (a) and the qSDV profile (b) to the air broadening coefficients of water vapor in the HITRAN2020 database; (c) the ratios of CO2-broadened coefficients of water vapor obtained by using the Voigt profile to the coefficients obtained by using the qSDV profile.

    表 1  CO2压力加宽的水分子谱线加宽参数(括号内数字为拟合误差)

    Table 1.  Line parameters of water vapor broadened by the pressure of carbon dioxide (Numbers in brackets are fitting errors)

    线位置
    $ {\nu }_{0}/{\rm cm}^{-1}$
    CO2加宽系数$/({\mathrm{c}\mathrm{m} }^{-1}{\cdot}{\mathrm{a}\mathrm{t}\mathrm{m} }^{-1})$空气加宽系数/
    $({\mathrm{c}\mathrm{m} }^{-1}{\cdot}{\mathrm{a}\mathrm{t}\mathrm{m} }^{-1})$
    比值
    VPqSDVP$ {\gamma }_{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N}}^{\mathrm{A}\mathrm{I}\mathrm{R}} $$\dfrac{{\gamma }_{1}^{ {\mathrm{C}\mathrm{O} }_{2} }}{\gamma _{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N} }^{\mathrm{A}\mathrm{I}\mathrm{R} }}\Big/{\text{%} }$$\dfrac{{\gamma }_{0}^{ {\mathrm{C}\mathrm{O} }_{2} }}{\gamma _{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N} }^{\mathrm{A}\mathrm{I}\mathrm{R} }}\Big/{\text{%} }$$\dfrac{{\gamma }_{0}^{ {\mathrm{C}\mathrm{O} }_{2} }}{{\gamma }_{\mathrm{V}\mathrm{P} }^{ {\mathrm{C}\mathrm{O} }_{2} }}\Big/{\text{%} }$
    $ {\gamma }_{1}^{{\mathrm{C}\mathrm{O}}_{2}} $$ {\gamma }_{0}^{{\mathrm{C}\mathrm{O}}_{2}} $$ {\gamma }_{2}^{{\mathrm{C}\mathrm{O}}_{2}} $
    9332.6230.079(0.42)0.093(1.86)0.020(6.8)0.04831.6321.9171.175
    9335.6910.107(0.58)0.111(2.76)0.013(18.7)0.07721.3911.4411.036
    9339.7090.083(0.74)0.100(4.95)0.007(20.0)0.07321.1351.3611.199
    9344.2630.084(0.69)0.097(2.51)0.016(7.07)0.05731.4681.6851.148
    9346.9120.095(0.66)0.102(1.61)0.026(6.92)0.07621.2471.3411.076
    9351.1490.072(0.18)0.079(1.37)0.005(9.63)0.06231.1531.2741.105
    9351.5090.082(1.14)0.092(4.00)0.004(12.05)0.08041.0141.1501.134
    9366.5910.084(0.18)0.085(1.27)0.018(17.27)0.06021.3941.4181.017
    9366.7810.082(0.40)0.089(2.40)0.089(2.40)0.05651.4511.5681.081
    9388.7510.085(0.96)0.094(2.58)0.015(9.77)0.06371.3281.4721.108
    9388.9680.096(0.56)0.102(3.35)0.069(18.15)0.07911.2121.2941.067
    9409.1300.086(0.41)0.089(1.92)0.010(12.02)0.07131.2051.2451.034
    9412.7900.122(1.30)0.133(3.37)0.019(6.05)0.08171.4891.6251.092
    9676.8810.068(0.32)0.073(1.60)0.016(11.04)0.04731.4461.5521.073
    9694.8110.083(0.28)0.098(2.41)0.031(9.83)0.06281.3231.5601.180
    9713.9590.094(0.69)0.099(2.72)0.024(11.35)0.07261.2941.3701.059
    9720.2770.114(0.51)0.118(3.86)0.027(7.39)0.08311.3671.4211.040
    9721.8060.094(0.20)0.104(1.15)0.024(8.58)0.07041.3381.4771.104
    下载: 导出CSV
  • [1]

    Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Heyden P V 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119

    [2]

    Antony B K, Neshyba S, Gamache R R 2007 J. Quant. Spectrosc. Radiat. Transfer 1 148

    [3]

    郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬 2021 物理学报 70 163301Google Scholar

    Zheng J J, Zhu W Y, Liu Q, Ma H L, Liu K, Qian X M, Chen J, Yang T 2021 Acta Phys. Sin. 70 163301Google Scholar

    [4]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Electron. 36 663

    [5]

    Jacquemart D, Gamache R, Rothman L S 2004 J. Quant. Spectrosc. Radiat. Transfer 96 205

    [6]

    Sironneau V T, Hodges J T 2015 J. Quant. Spectrosc. Radiat. Transfer 152 1Google Scholar

    [7]

    Brown L R, Toth R A, Dulick M 2002 J. Quant. Spectrosc. Radiat. Transfer 212 57

    [8]

    Sagawa H, Mendrok J, Seta T, Hoshina H, Baron P, Suzuki K, Hosako I, Otani C, Hartogh P, Kasai Y 2009 J. Quant. Spectrosc. Radiat. Transfer 18 2027

    [9]

    高晓明, 黄伟, 邓伦华, 邵杰, 樊宏, 曹振松, 袁怿谦, 张为俊, 龚知本 2006 光学学报 26 5Google Scholar

    Gao X M, Huang W, Deng L H, Shao J, Fan H, Cao Z S, Yuan Y Q, Zhang W J, Gong Z B 2006 Acta Opt. Sin. 26 5Google Scholar

    [10]

    Chamberlain S, Bailey J, Crisp D, Meadows V 2013 Icarus 1 364

    [11]

    Brown L R, Humphrey C M, Gamache R R 2007 J. Mol. Spectrosc. 246 1Google Scholar

    [12]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 187 472Google Scholar

    [13]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 203 158Google Scholar

    [14]

    Borkov Y, Petrova T M, Solodov A M, Solodov A A 2018 J. Mol. Spectrosc. 344 39Google Scholar

    [15]

    Lu Y, Li X F, Liu A W, Hu S M 2014 Chin. J. Chem. Phys. 27 1Google Scholar

    [16]

    Régalia L, Cousin E, Gamache R R, Vispoel B, Robert S, Thomas X 2019 J. Quant. Spectrosc. Radiat. Transfer 231 126Google Scholar

    [17]

    Bézard B, Fedorova A, Bertaux J-L, Rodin A, Korablev O 2011 Icarus 1 173

    [18]

    Zheng J, Ma H, Liu Q, Qian X, Zhu W, Cao Z, Chen J, Yang T, Xu Q 2022 Microwave Opt. Technol. Lett.Google Scholar

    [19]

    Gordon I E, Rothman L S, hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [20]

    Howard J N, Burch D E, Williams D 1956 J. Opt. Soc. Am. 46 242Google Scholar

    [21]

    Pollack J B, Dalton J, Grinspoon D, et al. 1993 Icarus 103 1Google Scholar

  • [1] 王亚民, 吴昊龙, 陶蒙蒙, 李国华, 王晟, 叶景峰. 室温下CO的近红外波段宽光谱吸收测量. 物理学报, 2023, 72(22): 224207. doi: 10.7498/aps.72.20230557
    [2] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [3] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [4] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正. 物理学报, 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [5] 郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬. 1 μm波段水分子吸收光谱双光程同步测量方法研究. 物理学报, 2021, 70(16): 163301. doi: 10.7498/aps.70.20210100
    [6] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值. 物理学报, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [7] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究. 物理学报, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [9] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [10] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [11] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发. 物理学报, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [12] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究. 物理学报, 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [13] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究. 物理学报, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [14] 陈宏善, 孟凡顺, 李向富, 张素玲. (TiO2)n(n=3—6)团簇吸附水分子的理论研究. 物理学报, 2009, 58(2): 887-892. doi: 10.7498/aps.58.887
    [15] 周艳红, 许 英, 郑小宏. 水分子对碳链的输运性质影响的第一性原理研究. 物理学报, 2007, 56(2): 1093-1098. doi: 10.7498/aps.56.1093
    [16] 刘 莹, 彭长德, 兰秀风, 骆晓森, 沈中华, 陆 建, 倪晓武. 乙醇和水分子形成配合物与荧光光谱特性研究. 物理学报, 2005, 54(11): 5455-5461. doi: 10.7498/aps.54.5455
    [17] 张家良, 刘莉莹, 马腾才. 线型分子的电子能级之Λ分裂的新解释. 物理学报, 2002, 51(5): 1026-1030. doi: 10.7498/aps.51.1026
    [18] 高晖, 刘煜炎, 林洁丽, 石兢, 熊贵光, 张哲华, 田德诚. 速度调制激光光谱线型的研究. 物理学报, 2001, 50(8): 1463-1466. doi: 10.7498/aps.50.1463
    [19] 毛念新, 黄叶肖, 陆卫, 叶红娟, 沈学础, 胡志宏, 罗安湘. 天然FeS2(黄铁矿)的红外光谱研究. 物理学报, 1993, 42(10): 1712-1718. doi: 10.7498/aps.42.1712
    [20] 毕志毅, 丁良恩, 马龙生. 调制转移光谱线型的理论计算. 物理学报, 1993, 42(4): 582-591. doi: 10.7498/aps.42.582
计量
  • 文章访问数:  4161
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-06-06
  • 上网日期:  2022-10-14
  • 刊出日期:  2022-10-20

/

返回文章
返回