搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外延BaMoO3, BaMoO4薄膜的生长行为

戚炜恒 王震 李翔飞 禹日成 王焕华

引用本文:
Citation:

外延BaMoO3, BaMoO4薄膜的生长行为

戚炜恒, 王震, 李翔飞, 禹日成, 王焕华

Growth behaviors of epitaxial barium molybdate (BaMoO3, BaMoO4) film

Qi Wei-Heng, Wang Zhen, Li Xiang-Fei, Yu Ri-Cheng, Wang Huan-Hua
PDF
HTML
导出引用
  • 在4d过渡族金属氧化物AMoO3 (A = Ca, Sr, Ba)中, BaMoO3是唯一没有外延薄膜相关研究报导的材料. 本文以BaMoO3多晶陶瓷为靶材, 利用脉冲激光沉积技术得到了高质量的BaMoO3和BaMoO4外延薄膜; 分析了氧分压在薄膜生长中的作用, 发现BaMoO3的外延生长对氧分压极为敏感. 通过氧分压调制实验, 在SrTiO3 (111)衬底上发现了一种BaMoO3参与的自组装超晶格结构, 对其进行了结构表征和初步分析, 并从脉冲激光沉积制备钙钛矿薄膜的动力学角度对该结构的形成进行了讨论; 最后对本系列外延膜进行了电输运性质的表征, 结果显示在SrTiO3 (001)衬底上的外延BaMoO3薄膜有着更好的导电性.
    Transition metal oxides have been a research hotspot for basic scientific research and frontier applications. Owing to the presence of d electrons and strong electron correlation, a wealth of physical phenomena emerges in the transition metal oxide family. In particular, extremely fruitful research progress is achieved in a 3d orbital elemental system. In comparison, the 4d transition metal oxides need more attention. Molybdate has excellent optical and electrical properties. Among AMoO3 (A = Ca, Sr, Ba), only BaMoO3 has not been reported for epitaxial films to date. In this work, high-quality epitaxial films of BaMoO3 and BaMoO4 are prepared by using the pulsed laser deposition. We conduct the oxygen partial pressure modulation experiments and the results show that the growth of BaMoO3 is sensitive to oxygen partial pressure. Also, BaMoO3 has a geometrically similar lattice structure to BaMoO4, and there exists epitaxial competition between BaMoO3 and BaMoO4. These two points make the preparation of epitaxial BaMoO3 films more challenging. The key to the preparation of epitaxial BaMoO3 thin films is the reduced laser target material, high vacuum environment, and ultra-low oxygen partial pressure. The epitaxy competition can be avoided by using the SrTiO3 (111) substrate. We conduct oxygen partial pressure modulation experiments on a narrow scale and reveal a self-assembled superlattice of epitaxial BaMoO3 film on a SrTiO3(111) substrate. Both the satellite peaks in the XRD pattern and the HRTEM results indicate the superlattice period of about 7.04 Å. The oxygen partial pressure is the only parameter that regulates this phenomenon, so we presume that the essence of the self-assembled superlattice is periodic oxygen-induced lattice defects. Finally, electrical transport characterization experiments are conducted on representative BaMoO3 films. The $\rho \text{-} T$ curve measurements and fitting results show that the epitaxial BaMoO3 films on SrTiO3(001) substrates have better conductivities. The electrical transport properties of BaMoO3 films grown on SrTiO3(111) substrates are dominated by electron-phonon scattering, and BaMoO3 films grown on SrTiO3(001) substrate have stronger electron-electron scattering interactions. The resistivity of the self-assembled superlattice BaMoO3 films is relatively high and electron-electron scattering plays an important role in determining the electrical transport property.
      通信作者: 王焕华, wanghh@ihep.ac.cn
    • 基金项目: 中国科学院国际合作局国际伙伴计划项目(批准号: 113111KYSB20190052)资助的课题
      Corresponding author: Wang Huan-Hua, wanghh@ihep.ac.cn
    • Funds: Project supported by the International Partnership Program, Bureau of International Cooperation Chinese Academy of Sciences, China (Grant No. 113111KYSB20190052)
    [1]

    Cox P A 2010 Transition Metal Oxides: an Introduction to Their Electronic Structure and Properties (Vol. 27) (Oxford: Oxford University Press) pp1–35

    [2]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J, Lichtenberg F 1994 Nature 372 532Google Scholar

    [3]

    Nakatsuji S, Ikeda S I, Maeno Y 1997 J. Phys. Soc. Jpn. 66 1868Google Scholar

    [4]

    Zhang J, McLeod A S, Han Q, Chen X, Bechtel H A, Yao Z, Corder S G, Ciavatti T, Tao T H, Aronson M 2019 Phys. Rev. X 9 011032

    [5]

    Nobukane H, Yanagihara K, Kunisada Y, Ogasawara Y, Isono K, Nomura K, Tanahashi K, Nomura T, Akiyama T, Tanda S 2020 Sci. Rep. 10 3462

    [6]

    He T, Cava R 2001 Phys. Rev. B 63 172403Google Scholar

    [7]

    Radetinac A, Mani A, Melnyk S, Nikfalazar M, Ziegler J, Zheng Y, Jakoby R, Alff L, Komissinskiy P 2014 Appl. Phys. Lett. 105 114108

    [8]

    Mizoguchi H, Fukumi K, Kitamura N, Takeuchi T, Hayakawa J, Yamanaka H, Yanagi H, Hosono H, Kawazoe H 1999 J. Appl. Phys. 85 6502

    [9]

    Nagai I, Shirakawa N, Ikeda S I, Iwasaki R, Nishimura H, Kosaka M 2005 Appl. Phys. Lett. 87 024105Google Scholar

    [10]

    Radetinac A, Takahashi K S, Alff L, Kawasaki M, Tokura Y 2010 Appl. Phys. Express 3 073003

    [11]

    Ha Y, Lee S 2020 Adv. Funct. Mater. 30 2001489Google Scholar

    [12]

    Hayashi S, Aoki R, Nakamura T 1979 Mater. Res. Bull. 14 409

    [13]

    Kurosaki K, Oyama T, Muta H, Uno M, Yamanaka S 2004 J. Alloys Compd. 372 65Google Scholar

    [14]

    Ma T, Jacobs R, Booske J, Morgan D 2021 J. Mater. Chem. C 9 12778

    [15]

    Panchal V, Garg N, Sharma S M 2006 J. Phys. Condens. Matter 18 3917Google Scholar

    [16]

    Guo D, Yang Q, Hua H, Hu C 2014 J. Phys. Chem. C 118 13826Google Scholar

    [17]

    Ray S K, Kshetri Y K, Lee S W 2019 Nanotechnology 30 454002Google Scholar

    [18]

    Marques A P A, Picon F C, Melo D, Pizani P S, Leite E R, Varela J A, Longo E 2008 J. Fluoresc. 18 51Google Scholar

    [19]

    Kamata K, Nakamura T, Sata T 1975 Mater. Res. Bull. 10 373

    [20]

    Hegde M 2001 J. Chem. Sci. 113 445Google Scholar

    [21]

    Nassif V, Carbonio R E, Alonso J A 1999 J. Solid State Chem. 146 266

    [22]

    Ting X W, Chun Y, Ping H, Guo P Z, Yan R L 2009 Chin. J. Inorg. Chem. 25 1414

  • 图 1  (a) 氧分压调制样品的沿着STO[00L]$\theta\text{—}2\theta$联动扫描XRD结果; (b) 沿界面法向观察的STO (001)上外延生长BaMoO3薄膜示意图; (c) STO (001)上外延生长BaMoO3薄膜的立体示意图; (d) 沿界面法向观察的STO (001)上外延生长BaMoO4薄膜示意图; (e) STO (001)上外延生长BaMoO4薄膜的立体示意图

    Fig. 1.  (a) Out of plane $\theta-2\theta$ scan along STO [00L] of samples which were prepared at different oxygen partial pressure; (b) schematic diagram of epitaxial BaMoO3 film on STO (001) substrate observed along normal direction of the heterointerface; (c) three-dimensional schematic diagram of epitaxial BaMoO3 film on STO (001) substrate; (d) schematic diagram of epitaxial BaMoO4 film on STO (001) substrate observed along normal direction of heterointerface; (e) three-dimensional schematic diagram of epitaxial BaMoO4 film on STO (001) substrate.

    图 2  (a) 高质量BaMoO3和 (b) BaMoO4外延膜沿STO [00L] $\theta\text{—}2\theta$联动扫描XRD结果; (c) BaMoO3在STO (103)倒易点附近的RSM图谱; (d) BaMoO4 (112)倒易点附近的RSM图谱

    Fig. 2.  Out of plane $\theta-2\theta$ scan along STO [00L] of high quality (a) BaMoO3 and (b) BaMoO4 films; (c) reciprocal space mapping of BaMoO3 near the STO (103); (d) reciprocal space mapping of BaMoO4 (112)

    图 3  氧分压调制实验下STO (111)衬底上纯相BaMoO3, 自组装超晶格BaMoO3, 非晶BaMoO3的XRD结果

    Fig. 3.  XRD pattern of BaMoO3 film, self-assembled superlattice BaMoO3 film, amorphous BaMoO3 film on STO (111) substrate under oxygen partial pressure modulation

    图 4  (a) BaMoO4/STO (001)的HAADF图像; (b) 自组装超晶格BaMoO3/STO (111)的HRTEM图像

    Fig. 4.  (a) HAADF imaging of BaMoO4/STO (001); (b) HRTEM imaging of self-assembled superlattice BaMoO3/STO (111)

    图 5  BaMoO3薄膜的$\rho \text{-}T$曲线测量与拟合结果 (a) BaMoO3/STO(001), BaMoO3/STO(111)和自组装超晶格BaMoO3/STO(111)的$\rho \text{-} T$曲线测量结果; (b) BaMoO3/STO(001), (c) BaMoO3/STO(111)和(d)自组装超晶格BaMoO3/STO(111)的$\rho \text{-} T$曲线拟合结果

    Fig. 5.  $\rho \text{-} T$ curve measurement and fitting results of BaMoO3 films. (a) $\rho \text{-} T$ curve measurement results of BaMoO3/STO (001), BaMoO3/STO (111), and self-assembled superlattice BaMoO3/STO(111); $\rho \text{-} T$ curve fitting results of (b) BaMoO3/STO (001), (c) BaMoO3/STO (111), and (d) self-assembled superlattice BaMoO3/STO(111)

    图 A1  自组装超晶格BaMoO3的球差校正ABF图像

    Fig. A1.  Spherical aberration-corrected ABF of self-assembled superlattice BaMoO3

    表 1  外延BaMoO3和BaMoO4最优生长条件

    Table 1.  Optimal growth conditions for epitaxial BaMoO3 and BaMoO4 thin film.

    主要参数BaMoO3薄膜BaMoO4薄膜
    衬底温度/℃650600
    激光波长/nm248 248
    聚焦后激光能量密度/(J·cm–2)1.21.5
    激光频率/Hz2 2
    靶材衬底距离/mm65 65
    氧分压/Pa$\ll 3\times 10^{-5}$$2.2\times 10^{-3}$
    下载: 导出CSV
  • [1]

    Cox P A 2010 Transition Metal Oxides: an Introduction to Their Electronic Structure and Properties (Vol. 27) (Oxford: Oxford University Press) pp1–35

    [2]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J, Lichtenberg F 1994 Nature 372 532Google Scholar

    [3]

    Nakatsuji S, Ikeda S I, Maeno Y 1997 J. Phys. Soc. Jpn. 66 1868Google Scholar

    [4]

    Zhang J, McLeod A S, Han Q, Chen X, Bechtel H A, Yao Z, Corder S G, Ciavatti T, Tao T H, Aronson M 2019 Phys. Rev. X 9 011032

    [5]

    Nobukane H, Yanagihara K, Kunisada Y, Ogasawara Y, Isono K, Nomura K, Tanahashi K, Nomura T, Akiyama T, Tanda S 2020 Sci. Rep. 10 3462

    [6]

    He T, Cava R 2001 Phys. Rev. B 63 172403Google Scholar

    [7]

    Radetinac A, Mani A, Melnyk S, Nikfalazar M, Ziegler J, Zheng Y, Jakoby R, Alff L, Komissinskiy P 2014 Appl. Phys. Lett. 105 114108

    [8]

    Mizoguchi H, Fukumi K, Kitamura N, Takeuchi T, Hayakawa J, Yamanaka H, Yanagi H, Hosono H, Kawazoe H 1999 J. Appl. Phys. 85 6502

    [9]

    Nagai I, Shirakawa N, Ikeda S I, Iwasaki R, Nishimura H, Kosaka M 2005 Appl. Phys. Lett. 87 024105Google Scholar

    [10]

    Radetinac A, Takahashi K S, Alff L, Kawasaki M, Tokura Y 2010 Appl. Phys. Express 3 073003

    [11]

    Ha Y, Lee S 2020 Adv. Funct. Mater. 30 2001489Google Scholar

    [12]

    Hayashi S, Aoki R, Nakamura T 1979 Mater. Res. Bull. 14 409

    [13]

    Kurosaki K, Oyama T, Muta H, Uno M, Yamanaka S 2004 J. Alloys Compd. 372 65Google Scholar

    [14]

    Ma T, Jacobs R, Booske J, Morgan D 2021 J. Mater. Chem. C 9 12778

    [15]

    Panchal V, Garg N, Sharma S M 2006 J. Phys. Condens. Matter 18 3917Google Scholar

    [16]

    Guo D, Yang Q, Hua H, Hu C 2014 J. Phys. Chem. C 118 13826Google Scholar

    [17]

    Ray S K, Kshetri Y K, Lee S W 2019 Nanotechnology 30 454002Google Scholar

    [18]

    Marques A P A, Picon F C, Melo D, Pizani P S, Leite E R, Varela J A, Longo E 2008 J. Fluoresc. 18 51Google Scholar

    [19]

    Kamata K, Nakamura T, Sata T 1975 Mater. Res. Bull. 10 373

    [20]

    Hegde M 2001 J. Chem. Sci. 113 445Google Scholar

    [21]

    Nassif V, Carbonio R E, Alonso J A 1999 J. Solid State Chem. 146 266

    [22]

    Ting X W, Chun Y, Ping H, Guo P Z, Yan R L 2009 Chin. J. Inorg. Chem. 25 1414

  • [1] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能. 物理学报, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [2] 陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟. 脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能. 物理学报, 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [3] 樊济宇, 冯瑜, 陆地, 张卫纯, 胡大治, 杨玉娥, 汤如俊, 洪波, 凌浪生, 王彩霞, 马春兰, 朱岩. N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究. 物理学报, 2019, 68(10): 107501. doi: 10.7498/aps.68.20190019
    [4] 陈延彬, 张帆, 张伦勇, 周健, 张善涛, 陈延峰. 探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性. 物理学报, 2015, 64(9): 097502. doi: 10.7498/aps.64.097502
    [5] 吴建邦, 周民杰, 王雪敏, 王瑜英, 熊政伟, 程新路, Marie-José Casanove, Christophe Gatel, 吴卫东. 纳米FePt颗粒:MgO多层复合薄膜的外延生长、微观结构与磁性研究. 物理学报, 2014, 63(16): 166801. doi: 10.7498/aps.63.166801
    [6] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射. 物理学报, 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [7] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿). 物理学报, 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [8] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响. 物理学报, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [9] 李廷先, 张铭, 王光明, 郭宏瑞, 李扩社, 严辉. La2/3Sr1/3MnO3/BaTiO3复合薄膜的制备及其电致磁电效应研究. 物理学报, 2011, 60(8): 087501. doi: 10.7498/aps.60.087501
    [10] 尚杰, 张辉, 曹明刚, 张鹏翔. 氧压对Ba0.6Sr0.4TiO3薄膜晶格常数的影响及BaTiO3/Ba0.6Sr0.4TiO3超晶格的制备. 物理学报, 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [11] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征. 物理学报, 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [12] 储海峰, 李洁, 李绍, 黎松林, 王佳, 高艳丽, 邓辉, 王宁, 张玉, 吴玉林, 郑东宁. Sr2CoO4-δ薄膜中的自旋玻璃态的磁性质研究. 物理学报, 2010, 59(9): 6585-6592. doi: 10.7498/aps.59.6585
    [13] 刘 婷, 谈松林, 张 辉, 秦 毅, 张鹏翔. 氧压对SrTiO3和SrNb0.2Ti0.8O3薄膜晶格参数的影响及激光感生热电电压效应. 物理学报, 2008, 57(7): 4424-4427. doi: 10.7498/aps.57.4424
    [14] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究. 物理学报, 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [15] 李少珍, 李美亚, 徐文广, 魏建华, 赵兴中. Si基铁电Bi3.15Nd0.85Ti3O12多层薄膜的一致取向生长和性能的研究. 物理学报, 2006, 55(3): 1472-1478. doi: 10.7498/aps.55.1472
    [16] 段 苹, 陈正豪, 戴守愚, 周岳亮, 吕惠宾. La1-xPrxMnO3(x=0.1,0.2)薄膜庞磁电阻性质的研究. 物理学报, 2006, 55(3): 1441-1446. doi: 10.7498/aps.55.1441
    [17] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] 刘 震, 王淑芳, 赵嵩卿, 周岳亮. 利用脉冲激光沉积技术在双轴织构的Ni基带上外延CeO2薄膜. 物理学报, 2005, 54(12): 5820-5823. doi: 10.7498/aps.54.5820
    [19] 王伟田, 杨 光, 关东仪, 吴卫东, 陈正豪. 金属纳米团簇复合薄膜Au/BaTiO3与Fe/BaTiO3的PLD制备及其光吸收特征. 物理学报, 2004, 53(3): 932-935. doi: 10.7498/aps.53.932
    [20] 傅广生, 于威, 王淑芳, 李晓苇, 张连水, 韩理. 辉光放电等离子体辅助XeCl准分子激光溅射沉积碳氮薄膜. 物理学报, 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
计量
  • 文章访问数:  4542
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-11
  • 上网日期:  2022-08-12
  • 刊出日期:  2022-09-05

/

返回文章
返回