-
基于低磁雷诺数假设建立完全气体湍流流场、磁场耦合模型. 数值计算方法上, 通过AUSMPW+格式和LUSGS隐式处理方法求解磁流体动力学湍流流动方程, 其中湍流模型采用Spalart-Allmaras模型. 分析了不同外加磁场条件下平板及压缩拐角湍流边界层流动控制效果. 研究表明: 湍流边界层磁流体动力学流动控制效果与洛伦兹力大小正相关; 外加磁场作用下, 洛伦兹力的方向和流动方向相反, 此时洛伦兹力起到减速的作用, 减少了近壁面流体的动量, 降低了边界层抵抗分离的能力; 逆流向洛伦兹力减小了壁面的剪切应力, 从而降低湍流流场壁面摩擦阻力系数, 洛伦兹力对流体做负功, 边界层内温度增加; 磁相互作用位置对磁流体动力学分离区控制效果存在较大影响, 工程应用中需配置合理的磁场布局方案.Under the assumption of the low magnetic Reynolds number, the coupled model is established for the turbulent flow field and the externally applied magnetic field. The AUSMPW+ scheme and LUSGS method are used to solve turbulent magnetohydrodynamics (MHD) flow equations, in which the Spalart-Allmaras one-equation turbulence model is used. A series of numerical simulations over various geometry configurations, namely, a flat plate and a compression corner, is conducted by using an external electromagnetic field. Results show that the performance of MHD boundary layer flow control is determined mainly by the Lorentz force in the streamwise direction. With an external magnetic field used, the low velocity fluid in the boundary layer can decelerate and increase the static temperature locally. Moreover, the counter-flow Lorentz force always brings a negative effect on the turbulent skin friction coefficient, and the location for the MHD zone has a great influence on the control efficiency of the ramp-induced separation. A reasonable magnetic field layout scheme should be configured in practical engineering application.
-
Keywords:
- magnetohydrodynamics /
- turbulent boundary layer /
- multi-field coupling /
- flow control
[1] 谭慧俊, 李程鸿, 张悦, 李光胜 2016 推进技术 37 11Google Scholar
Tan H J, Li C H, Zhang Y, Li G S 2016 J. Propuls. Technol. 37 11Google Scholar
[2] Babinsky H, Harvery J K 2011 Shock Wave Boundary Layer Interactions (New York: Cambridge University Press) pp5, 6
[3] Van D M, Nedungadi A 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, July 11–14 2004, AIAA 2004–4129
[4] Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927Google Scholar
[5] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁 2019 物理学报 68 174702Google Scholar
Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z, Fu Y A X 2019 Acta Phys. Sin. 68 174702Google Scholar
[6] 李开, 柳军, 刘伟强 2017 物理学报 66 054701Google Scholar
Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar
[7] 李逸翔, 汪球, 罗凯, 李进平, 赵伟 2021 力学学报 53 2493Google Scholar
Li Y X, Wang Q, Luo K, Li J P, Zhao W 2021 Chin. J. Theor. Appl. Mech. 53 2493Google Scholar
[8] Fujino T, Matsumoto Y, Ishikawa M 2016 J. Spacecraft Rockets 53 528Google Scholar
[9] Bobashev S V, Mende N P, Sakharov V A 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6–9 2003, AIAA 2003-169
[10] Meyer R, Chintala N, Bystrivky B 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5–8 2004, AIAA 2004-510
[11] Zaidi S H, Smith T, Macheret S 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9–12 2006, AIAA 2006-1006
[12] Saito S, Udagawa K, Kawaguchi K 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7–10 2008, AIAA 2008-1091
[13] Nagata Y, Yamada K, Abe T 2013 J. Spacecraft Rockets 50 981Google Scholar
[14] 李益文, 樊昊, 张百灵 2017 航空学报 38 120368Google Scholar
Li Y W, Fan H, Zhang B L 2017 Acta Aeronaut. Astronaut. Sin. 38 120368Google Scholar
[15] Wang D, Wang J F, Li L F 2022 Aerosp. Sci. Technol. 126 107598Google Scholar
[16] 田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)
Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[17] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar
Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar
[18] Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[19] 李开, 刘伟强 2016 物理学报 65 064701Google Scholar
Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar
[20] Sinha K, Candler G 1998 29th AIAA, Fluid Dynamics Conference Albuquerque, NM, June 15–18 1998, AIAA 98-2649
[21] 贺旭照 2007 博士学位论文 (绵阳: 中国空气动力研究与发展中心)
He X Z 2007 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)
[22] 姚宵, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar
Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar
[23] Dietiker J K 2002 Ph. D. Dissertation (Wichita: Wichita State University)
[24] Settles G S, Dodson L J 1991 AIAA 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference, Honolulu, HI, June 24–26 1991, AIAA 91–1763
[25] Aithal S, Munipalli R, Shankar V 2004 Performance Enhancement of High Speed Inlets Using MHD (USA: Defense Technical Information Center) pp13–23
-
图 1 完全气体磁流体湍流流场计算示意图 (
${\mu _{\text{t}}}$ 为湍流黏性系数,${k_{\text{t}}}$ 为湍流热传导系数,${F_{{\text{step}}}}$ 为耦合计算过程流场迭代步数)Fig. 1. Schematic of coupling computations of the magnetohydrodynamic turbulent flows based on the perfect gas model (
$ {\mu _{\text{t}}} $ is the turbulent viscosity coefficient,${k_{\text{t}}}$ is the turbulent heat transfer coefficient,${F_{{\text{step}}}}$ is the number of iteration steps of the flow field in the coupling calculation process).表 1 超声速平板湍流流动计算自由流条件
Table 1. Freestream conditions for the supersonic flat plate flow.
参数 符号 数值 马赫数 $M{a_\infty }$ 2.244 来流温度 T∞/K 278 单位雷诺数 Re∞ 4.31×107 来流密度 ρ∞/(kg·m–3) 1.0 表 2 圆球绕流算例计算自由流条件
Table 2. Freestream conditions for the hemisphere flow.
参数 符号/单位 数值 马赫数 $M{a_\infty }$ 5.0 来流温度 ${T_\infty }/{{\rm{K}}}$ 100 来流压力 ${P_\infty }/{ {\rm{Pa} } }$ 1587 球头半径 r/m 0.01 壁面温度 ${T_{\text{w} } }/{{\rm{K}}}$ 130 电导率 ${\sigma _{\text{e} } }/({\rm{S}} \cdot { {\text{m} }^{ - 1} })$ 794 表 3 超声速平板磁流体湍流流动计算自由流条件
Table 3. Freestream conditions for the flat plate magnetohydrodynamic turbulent flows.
参数 符号/单位 数值 马赫数 $M{a_\infty }$ 2.0 来流温度 T∞/K 300 雷诺数 Re∞,L 3.75 × 106 来流压力 P∞/(N·m–2) 1.706 × 105 平板长度 L/m 0.08 电导率 σe/(S·m–1) 800 表 4 34°压缩拐角磁流体湍流流动自由流条件
Table 4. Freestream conditions for the 34° ramp magnetohydrodynamic turbulent flows.
参数 符号/单位 数值 马赫数 $M{a_\infty }$ 9.22 来流温度 T∞/K 64.5 单位雷诺数 Re∞ 4.31×107 来流密度 ρ∞/(kg·m–3) 0.1368 前平板长度 L/m 0.56 壁面温度 Tw/K 295 表 5 电磁流动控制参数
Table 5. Electromagnetic flow control parameters.
计算工况 ${x_1}/{{\rm{m}}}$ ${x_2}/{{\rm{m}}}$ ${B_{\max } }/{{\rm{T}}}$ ${\sigma _{\text{e} } }/\left( { {\rm{S} } {\cdot} { {\rm{m} }^{ - 1} } } \right)$ Case 1 0.30 0.40 4.0 4.0 Case 2 0.35 0.45 4.0 4.0 Case 3 0.40 0.50 4.0 4.0 Case 4 0.45 0.55 4.0 4.0 -
[1] 谭慧俊, 李程鸿, 张悦, 李光胜 2016 推进技术 37 11Google Scholar
Tan H J, Li C H, Zhang Y, Li G S 2016 J. Propuls. Technol. 37 11Google Scholar
[2] Babinsky H, Harvery J K 2011 Shock Wave Boundary Layer Interactions (New York: Cambridge University Press) pp5, 6
[3] Van D M, Nedungadi A 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, July 11–14 2004, AIAA 2004–4129
[4] Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927Google Scholar
[5] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁 2019 物理学报 68 174702Google Scholar
Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z, Fu Y A X 2019 Acta Phys. Sin. 68 174702Google Scholar
[6] 李开, 柳军, 刘伟强 2017 物理学报 66 054701Google Scholar
Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar
[7] 李逸翔, 汪球, 罗凯, 李进平, 赵伟 2021 力学学报 53 2493Google Scholar
Li Y X, Wang Q, Luo K, Li J P, Zhao W 2021 Chin. J. Theor. Appl. Mech. 53 2493Google Scholar
[8] Fujino T, Matsumoto Y, Ishikawa M 2016 J. Spacecraft Rockets 53 528Google Scholar
[9] Bobashev S V, Mende N P, Sakharov V A 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6–9 2003, AIAA 2003-169
[10] Meyer R, Chintala N, Bystrivky B 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5–8 2004, AIAA 2004-510
[11] Zaidi S H, Smith T, Macheret S 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9–12 2006, AIAA 2006-1006
[12] Saito S, Udagawa K, Kawaguchi K 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7–10 2008, AIAA 2008-1091
[13] Nagata Y, Yamada K, Abe T 2013 J. Spacecraft Rockets 50 981Google Scholar
[14] 李益文, 樊昊, 张百灵 2017 航空学报 38 120368Google Scholar
Li Y W, Fan H, Zhang B L 2017 Acta Aeronaut. Astronaut. Sin. 38 120368Google Scholar
[15] Wang D, Wang J F, Li L F 2022 Aerosp. Sci. Technol. 126 107598Google Scholar
[16] 田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)
Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[17] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar
Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar
[18] Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[19] 李开, 刘伟强 2016 物理学报 65 064701Google Scholar
Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar
[20] Sinha K, Candler G 1998 29th AIAA, Fluid Dynamics Conference Albuquerque, NM, June 15–18 1998, AIAA 98-2649
[21] 贺旭照 2007 博士学位论文 (绵阳: 中国空气动力研究与发展中心)
He X Z 2007 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)
[22] 姚宵, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar
Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar
[23] Dietiker J K 2002 Ph. D. Dissertation (Wichita: Wichita State University)
[24] Settles G S, Dodson L J 1991 AIAA 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference, Honolulu, HI, June 24–26 1991, AIAA 91–1763
[25] Aithal S, Munipalli R, Shankar V 2004 Performance Enhancement of High Speed Inlets Using MHD (USA: Defense Technical Information Center) pp13–23
计量
- 文章访问数: 4707
- PDF下载量: 68
- 被引次数: 0