搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构

黄德饶 宋俊杰 何丕模 黄凯凯 张寒洁

引用本文:
Citation:

Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构

黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁

Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001)

Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie
PDF
HTML
导出引用
  • 研究9,9′-二亚呫吨分子在Ru(0001)上的吸附行为, 在室温下通过扫描隧道电子显微镜观察石墨烯的自下而上制备过程. 在亚单层体系中, 9,9′-二亚呫吨分子随机吸附在Ru(0001)上, 简单分析了其空间结构; 并以 9,9′-二亚呫吨分子为前体, 在Ru(0001)衬底上自下而上制备石墨烯, 在超高真空中对Ru(0001)衬底进行长时间退火后, 首次发现其具有3种不同旋转角(6.3°, 13.9°和16.1°)的摩尔超结构, 迄今为止未见报道, 并通过构建模型分析这3种摩尔超结构的形成机制. 本实验为丰富Ru(0001)上摩尔超结构多样性作出了贡献, 同时也对以石墨烯/Ru(0001)为基的科学研究打下基础.
    This paper reports the adsorption behavior of the 9,9′-Dixanthylidene on Ru(0001), the bottom-up fabrication of graphene is also investigated through a scanning tunneling microscope (STM). We analyze the spatial structure of 9,9′-Dixanthylidene molecules which are randomly dispersed on a Ru(0001) substrate in the sub-monolayer coverage. Then we bottom-up fabricate the graphene on the Ru(0001) substrate with the 9,9′-Dixanthylidene molecules as the precursor. Three kinds of moiré superstructures with different rotation angles (6.3°, 13.9°, and 16.1°) are found after implementing high temperature annealing in ultrahigh vacuum. This result provides data support for the study of moiré superstructures on Ru(0001) substrate and lays a solid foundation for further scientific research based on graphene/Ru(0001).
      Corresponding author: Song Jun-Jie, songjunjiezd@163.com ; Zhang Han-Jie, zhj_fox@zju.edu.cn
    [1]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar

    [4]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [5]

    Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M 2010 Nature 468 549Google Scholar

    [6]

    Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385Google Scholar

    [7]

    Chen Q Y, Song J J, Jing L W, Huang K K, He P M, Zhang H J 2020 Chin. Phys. B 29 026801Google Scholar

    [8]

    Song J J, Zhang H J, Zhang Y X, Cai Y L, Bao S N, He P M 2016 Appl. Surf. Sci. 367 424Google Scholar

    [9]

    Zhang H J, Lü B, Lu Y H, Huang H, Li H Y, Bao S N, He P M 2006 Chin. Phys. 15 1892Google Scholar

    [10]

    N'Diaye A T, Bleikamp S, Feibelman P J, Michely T 2006 Phys. Rev. Lett. 97 215501Google Scholar

    [11]

    Hattab H, N’Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J, Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903Google Scholar

    [12]

    Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S 2004 Surf. Sci. 560 183Google Scholar

    [13]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [14]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530Google Scholar

    [15]

    Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102Google Scholar

    [16]

    Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807Google Scholar

    [17]

    Zhang L N, Dong J C, Guan Z Y, Zhang X Y, Ding F 2020 Nanoscale 12 12831Google Scholar

    [18]

    Wang B, Bocquet M L 2012 Nanoscale 4 4687Google Scholar

    [19]

    Zhang L Z, Du S X, Sun J T, Huang L, Meng L, Xu W Y, Pan L D, Pan Y, Wang Y L, Hofer W A, Gao H J 2014 Adv. Mater. Interfaces 1 1300104Google Scholar

    [20]

    Han Y and Evans J W 2015 J. Chem. Phys. 143 164706Google Scholar

    [21]

    Juan D A, Mariano D J S, Jose M G R 2019 J. Phys. Chem. C 123 5525Google Scholar

    [22]

    Ren J D, Guo H M, Pan J B, Zhang Y F, Yang Y F, Wu X, Du S X, Ouyang M, Gao H J 2017 Phys. Rev. Lett. 119 176806Google Scholar

    [23]

    张志模, 张文号, 付英双 2019 物理学报 68 226801Google Scholar

    Zhang Z M, Zhang W H, Fu Y S 2019 Acta Phys. Sin. 68 226801Google Scholar

    [24]

    Peng J P, Zhang H M, Song C L, Jiang Y P, Wang L L, He K, Xue Q K, Ma X C 2015 Chin. Phys. Lett. 32 068104Google Scholar

    [25]

    Horcas I, Fernández R, Gomez-Rodriguez J M, Colchero G, Baro A M 2007 Rev. Sci. Instrum. 78 013705Google Scholar

    [26]

    Lu B, Zhang H J, Tao Y S, Huang H, Li H Y, Bao S N, He P, Chen Q 2005 Appl. Phys. Lett. 86 061915Google Scholar

    [27]

    Cui Y, Fu Q, Zhang H, Bao X H 2011 Chem. Commun. 47 1470Google Scholar

    [28]

    Bacon M, Bradley S J, Nann T 2014 Part. Part. Syst. Charact. 31 415Google Scholar

    [29]

    Feng W, Lei S L, Li Q X, Zhao A D 2011 J. Phys. Chem. C 115 24858Google Scholar

    [30]

    Jiang D E, Du M H, Dai S 2009 J. Chem. Phys. 130 074705Google Scholar

    [31]

    Thiemann F L, Rowe P, Zen A, Muller E A, Michaelides A 2021 Nano Lett. 21 8143Google Scholar

    [32]

    Bhattarai B, Biswas P, Raymond A F, Drabold D A 2018 Phys. Chem. Chem. Phys. 20 19546Google Scholar

    [33]

    Kumar A, Wilson M, Thorpe M F 2012 J. Phys. Condens. Matter 24 485003Google Scholar

    [34]

    Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y and Chen P 2019 Adv. Mater. 31 1808283Google Scholar

    [35]

    Ye R Q, Peng Z W, Metzger A, Lin J, Mann J A, Huang K W, Xiang C S, Fan X J, Samuel E L G, Alemany L B, Martí A A, Tour J M 2015 ACS Appl. Mater. Interfaces. 7 7041Google Scholar

    [36]

    Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E, Clarke J 1987 Phys. Rev. B 35 7790Google Scholar

    [37]

    Wan X, Chen K, Liu D Q, Chen J, Miao Q, Xu J B 2012 Chem. Mater. 24 3906Google Scholar

    [38]

    Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar

    [39]

    Talirz L, Söde H, Cai J M, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X L, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060Google Scholar

    [40]

    Jing L W, Song J J, Zhang Y X, Chen Q Y, Huang K K, Zhang H J, He P M 2019 Chin. Phys. B 28 076801Google Scholar

    [41]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033Google Scholar

  • 图 1  (a) 大量9,9′-二亚呫吨分子吸附于Ru(0001)上的STM图($75\;{\rm nm}\times75\;{\rm nm} $, 隧穿电压 ${V}_{\mathrm{T}}=-0.093\;\rm{V} $, 隧穿电流${I}_{\mathrm{T}}=0.465\;\rm{n}\mathrm{A} $); (b) 9,9′-二亚呫吨分子的高清STM图$\left(20\;{\rm nm\times 20\; nm}, \;{V}_{\mathrm{T}}=-0.002\;{\rm V},\; {I}_{\mathrm{T}}=0.285\;\rm{nA}\right)$, 白色实线圆圈指出有机分子, 白色虚线圆圈指出了石墨烯量子点; (c) 9,9′-二亚呫吨分子模型的正视图和一些参数标识; (d) 9,9′-二亚呫吨分子模型的侧视图

    Fig. 1.  (a) STM image of a large number of 9,9′-Dixanthylidene molecules on Ru(0001)($75\;{\rm nm}\times75\;{\rm nm} $, ${V}_{\mathrm{T}}= $$ -0.093\;\rm{V}$, ${I}_{\mathrm{T}}=0.465\;\rm{n}\mathrm{A} $); (b) high-resolution-STM image of 9,9′-Dixanthylidene molecules $\left(20\;{\rm nm}\times 20\;{\rm nm},\; {V}_{\mathrm{T}}= $$ -0.002\;\rm{V},\; {I}_{\mathrm{T}}=0.285\;\rm{n}\mathrm{A}\right)$, the white solid circles indicate the molecules, and the white dashed circles indicate the graphene quantum dots; (c) front view of 9,9′-Dixanthylidene molecular simulation diagram and display of necessary parameters; (d) side view of 9,9′-Dixanthylidene molecule simulation diagram.

    图 2  (a) 9,9'-二亚呫吨分子分布在未定型石墨烯上的STM图$(20\;\mathrm{nm}\times20\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\rm{n}\mathrm{A})$; (b) 图(a)周边的STM扫描图$(20\;\mathrm{nm}\times20\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.051\;{\rm V},\; {I}_{\mathrm{T}}=0.683\;\mathrm{nA})$; (c) 9,9'-二亚呫吨分子在未定型石墨烯上的模拟吸附形态; (d) 图(a)中蓝色区域的放大图像, a和b分别代表图(d)测量间距的两个碳环$(5\;\mathrm{nm}\times5\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\rm{n}\mathrm{A})$; (e) 图(d)中沿绿线的高度分布图; (f) 图(d)中沿蓝线的高度分布图

    Fig. 2.  (a) STM image of 9,9'-Dixanthylidene molecules on the amorphous graphene$(20\;\mathrm{nm}\times20\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\mathrm{nA})$; (b) STM image of the around area of panel (a) $\left(20\;\mathrm{nm}\times 20\;\mathrm{nm},\; {V}_{\rm T}=-0.051\;{\rm V}, \;{I}_{\rm T}=0.683\;{\rm nA}\right);$ (c) the simulated tiled morphology of the 9,9'-Dixanthylidene molecule in panel (a); (d) enlarged image of the blue rectangle in panel (a), a and b represent the two carbon rings that measured the distance in panel (d) respectively$(5\;\mathrm{nm}\times5\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\mathrm{nA})$; (e) line profile along the green line outlined in panel (d); (f) line profile along the blue line outlined in panel (d).

    图 3  (a) 石墨烯量子点的STM图$\left(5\;\mathrm{nm}\times 5\;\mathrm{nm},\; {V}_{\mathrm{T}}= $$ -0.002\;{\rm V}, \; {I}_{\mathrm{T}}=0.149\;\rm{n}\mathrm{A}\right);$ (b) 图(a)中沿绿线的高度分布图; (c) 图(a) 中蓝框处的更高清的STM图$(2.5\;\mathrm{nm}\times2.5\;\mathrm{nm}, $$ {V}_{\mathrm{T}}=-0.002\;{\rm V},\; {I}_{\mathrm{T}}=0.263\;\mathrm{nA})$, 石墨烯量子点的球棍模型被展示在图片的下方; (d) 5C6型石墨烯量子点吸附在Ru(0001)上的理论模型(红色圆球代表扫描过程中扫描到的碳原子, 白色圆球代表扫描不到的碳原子; 黑色原子代表Ru(0001)上第一层的钌原子, 灰色原子代表第二层的钌原子)

    Fig. 3.  (a) STM image of graphene quantum dots$\left(5\;\mathrm{nm}\times $$ 5\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.002\;{\rm V},\; {I}_{\mathrm{T}}=0.149\;\rm{n}\mathrm{A}\right)$; (b) line profile along the green line outlined in panel (a); (c) high-resolution STM image of the blue rectangle area in panel (a), showing the graphene quantum dots in detail $(2.5\;\mathrm{nm}\times2.5\;\mathrm{nm},\; {V}_{\mathrm{T}}= $$ -0.002\;{\rm V}, \; {I}_{\mathrm{T}}=0.263\;\rm{n}\mathrm{A})$, the ball-and-stick model of graphene quantum dot is displayed; (d) theoretical simulation image of 5C6 graphene quantum dots adsorbed on the Ru(0001) substrate (the red spheres are visible atoms, the white spheres are invisible atoms, the black atoms are the atoms of the first layer of the ruthenium substrate, and the gray atoms are the atoms of the second layer of the ruthenium substrate).

    图 4  (a) Ru(0001)衬底上3种摩尔超结构的STM图 $(50\; \mathrm{nm}\times 50\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\mathrm{nA});$ (b) 图(a)中红框区域的摩尔超结构图(6.3°的摩尔超结构)$\left(10\;\mathrm{nm}\times $$ 10\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\mathrm{nA}\right)$; (c) 图(b)中绿线的高度分布图; (d) 石墨烯与Ru(0001)衬底成6.3°夹角的摩尔超结构模拟图(其中黑色圆球代表衬底第一层钌原子, 灰色圆球代表衬底第二层钌原子, 黄色部分为石墨烯)

    Fig. 4.  (a) STM image of three kinds of moiré superstructures on Ru(0001) substrate$\left(50\;{\rm n}\mathrm{m}\times 50\;{\rm n}\mathrm{m},\; {V}_{\mathrm{T}}= -0.401\;{\rm V}, $$ \; {I}_{\mathrm{T}}=0.258\;{\rm n}\mathrm{A}\right);$ (b) STM topography of the red rectangle area in panel (a) which is the moiré superstructure of graphene on Ru (0001) with the angle of 6.3°$\left(10\;{\rm n}\mathrm{m}\times 10\;{\rm n}\mathrm{m}, $$ \; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;{\rm n}\mathrm{A}\right)$; (c) line profile along the green line outlined in panel (b); (d) the simulated image of graphene at a 6.3° angle to the ruthenium substrate (the black balls represent the first layer of ruthenium atoms, the gray balls represent the second layer of ruthenium atoms, and yellow small balls represent carbon atoms).

    图 5  (a) 图4(a)中蓝框区域的摩尔超结构图(13.9°的摩尔超结构)$\left(15\;{\rm nm}\times 15\;{\rm nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; I_{\mathrm{T}}=0.258\;\rm{n A}\right);$ (b) 图(a)中沿绿线的高度分布图; (c) 石墨烯与Ru(0001)衬底成13.9°夹角的摩尔超结构模拟图(其中黑色圆球代表衬底第1层钌原子, 灰色圆球代表衬底第2层钌原子, 黄色部分为石墨烯)

    Fig. 5.  (a) STM topography of the blue rectangle area in Fig. 4(a) which is the superstructure of graphene on Ru (0001) with an angle of 13.9° $\left(15\;{\rm nm}\times 15\;{\rm n m},\; {V}_{\rm{T}}=-0.401\;{\rm V},\; {I}_{\rm{T}}=0.258\;\rm{n}\rm{A}\right);$ (b) line profile along the green line outlined in panel (a); (c) the simulated image of the superstructure at a 13.9° angle to the ruthenium substrate, the unit cell is highlighted by the red rhombus (the black balls represent the first layer of ruthenium atoms, the gray balls represent the second layer of ruthenium atoms, and yellow small balls represent carbon atoms).

    图 6  (a) 图4(a)中黄框区域的摩尔超结构图(16.1°的摩尔超结构)$(15\;{\rm nm \times 15\; nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\rm{nA})$; (b) 图(a)中沿着绿线的高度分布图; (c) 石墨烯与Ru(0001)衬底成16.1°夹角的摩尔超结构模拟图(其中黑色圆球代表衬底第一层钌原子, 灰色圆球代表衬底第二层钌原子, 黄色部分为石墨烯)

    Fig. 6.  (a) STM topography of the yellow rectangle area in Fig. 4(a) which is the moiré superstructure of graphene on Ru (0001) with an angle of 16.1°$\left(15\;{\rm n}\mathrm{m}\times 15\;{\rm n}\mathrm{m},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\rm{n}\mathrm{A}\right)$; (b) line profile along the green line outlined in panel (a); (c) the corresponding structural model, the unit cell is also highlighted by the red rhombus (the black balls represent the first layer of ruthenium atoms, the gray balls represent the second layer of ruthenium atoms, and yellow small balls represent carbon atoms).

  • [1]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar

    [4]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [5]

    Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M 2010 Nature 468 549Google Scholar

    [6]

    Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385Google Scholar

    [7]

    Chen Q Y, Song J J, Jing L W, Huang K K, He P M, Zhang H J 2020 Chin. Phys. B 29 026801Google Scholar

    [8]

    Song J J, Zhang H J, Zhang Y X, Cai Y L, Bao S N, He P M 2016 Appl. Surf. Sci. 367 424Google Scholar

    [9]

    Zhang H J, Lü B, Lu Y H, Huang H, Li H Y, Bao S N, He P M 2006 Chin. Phys. 15 1892Google Scholar

    [10]

    N'Diaye A T, Bleikamp S, Feibelman P J, Michely T 2006 Phys. Rev. Lett. 97 215501Google Scholar

    [11]

    Hattab H, N’Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J, Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903Google Scholar

    [12]

    Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S 2004 Surf. Sci. 560 183Google Scholar

    [13]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [14]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530Google Scholar

    [15]

    Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102Google Scholar

    [16]

    Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807Google Scholar

    [17]

    Zhang L N, Dong J C, Guan Z Y, Zhang X Y, Ding F 2020 Nanoscale 12 12831Google Scholar

    [18]

    Wang B, Bocquet M L 2012 Nanoscale 4 4687Google Scholar

    [19]

    Zhang L Z, Du S X, Sun J T, Huang L, Meng L, Xu W Y, Pan L D, Pan Y, Wang Y L, Hofer W A, Gao H J 2014 Adv. Mater. Interfaces 1 1300104Google Scholar

    [20]

    Han Y and Evans J W 2015 J. Chem. Phys. 143 164706Google Scholar

    [21]

    Juan D A, Mariano D J S, Jose M G R 2019 J. Phys. Chem. C 123 5525Google Scholar

    [22]

    Ren J D, Guo H M, Pan J B, Zhang Y F, Yang Y F, Wu X, Du S X, Ouyang M, Gao H J 2017 Phys. Rev. Lett. 119 176806Google Scholar

    [23]

    张志模, 张文号, 付英双 2019 物理学报 68 226801Google Scholar

    Zhang Z M, Zhang W H, Fu Y S 2019 Acta Phys. Sin. 68 226801Google Scholar

    [24]

    Peng J P, Zhang H M, Song C L, Jiang Y P, Wang L L, He K, Xue Q K, Ma X C 2015 Chin. Phys. Lett. 32 068104Google Scholar

    [25]

    Horcas I, Fernández R, Gomez-Rodriguez J M, Colchero G, Baro A M 2007 Rev. Sci. Instrum. 78 013705Google Scholar

    [26]

    Lu B, Zhang H J, Tao Y S, Huang H, Li H Y, Bao S N, He P, Chen Q 2005 Appl. Phys. Lett. 86 061915Google Scholar

    [27]

    Cui Y, Fu Q, Zhang H, Bao X H 2011 Chem. Commun. 47 1470Google Scholar

    [28]

    Bacon M, Bradley S J, Nann T 2014 Part. Part. Syst. Charact. 31 415Google Scholar

    [29]

    Feng W, Lei S L, Li Q X, Zhao A D 2011 J. Phys. Chem. C 115 24858Google Scholar

    [30]

    Jiang D E, Du M H, Dai S 2009 J. Chem. Phys. 130 074705Google Scholar

    [31]

    Thiemann F L, Rowe P, Zen A, Muller E A, Michaelides A 2021 Nano Lett. 21 8143Google Scholar

    [32]

    Bhattarai B, Biswas P, Raymond A F, Drabold D A 2018 Phys. Chem. Chem. Phys. 20 19546Google Scholar

    [33]

    Kumar A, Wilson M, Thorpe M F 2012 J. Phys. Condens. Matter 24 485003Google Scholar

    [34]

    Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y and Chen P 2019 Adv. Mater. 31 1808283Google Scholar

    [35]

    Ye R Q, Peng Z W, Metzger A, Lin J, Mann J A, Huang K W, Xiang C S, Fan X J, Samuel E L G, Alemany L B, Martí A A, Tour J M 2015 ACS Appl. Mater. Interfaces. 7 7041Google Scholar

    [36]

    Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E, Clarke J 1987 Phys. Rev. B 35 7790Google Scholar

    [37]

    Wan X, Chen K, Liu D Q, Chen J, Miao Q, Xu J B 2012 Chem. Mater. 24 3906Google Scholar

    [38]

    Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar

    [39]

    Talirz L, Söde H, Cai J M, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X L, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060Google Scholar

    [40]

    Jing L W, Song J J, Zhang Y X, Chen Q Y, Huang K K, Zhang H J, He P M 2019 Chin. Phys. B 28 076801Google Scholar

    [41]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033Google Scholar

  • [1] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [2] 张玉峰, 卢尧臣, 白萌萌, 李佐, 石明霞, 杨达晓, 杨孝天, 陶敏龙, 孙凯, 王俊忠. 生长在Cd(0001)和Bi(111)上的二氰基蒽分子薄膜的对比. 物理学报, 2023, 72(6): 066801. doi: 10.7498/aps.72.20222197
    [3] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [4] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [5] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [8] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [9] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [10] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [11] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [13] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [14] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  2055
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 修回日期:  2022-06-30
  • 上网日期:  2022-10-25
  • 刊出日期:  2022-11-05

/

返回文章
返回