搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄密电磁超表面研究进展

范辉颖 罗杰

引用本文:
Citation:

非厄密电磁超表面研究进展

范辉颖, 罗杰

Research progress of non-Hermitian electromagnetic metasurfaces

Fan Hui-Ying, Luo Jie
PDF
HTML
导出引用
  • 电磁超表面是一类由单层或多层亚波长人工微结构组成的平面电磁材料, 可以在亚波长尺度下实现对电磁波偏振、振幅和相位的有效调控. 然而, 将电磁波限制在深亚波长尺度的代价通常是大的损耗, 如辐射损耗、欧姆损耗. 有趣的是, 非厄米物理提供了一种将损耗这一不利因素转变为超表面设计中一个新自由度的新方法, 为扩展超表面功能提供了新方向. 近些年, 非厄米电磁超表面上的一些非常规物理效应引起了研究人员的广泛关注. 本文从完美吸收、奇异点与表面波三个方面对非厄米电磁超表面研究进行了综述, 并对该领域面临的挑战和发展前景进行了展望.
    Electromagnetic metasurface, as a type of planar electromagnetic material consisting of single-layer or multilayer subwavelength artificial micro-structure, can efficiently control the polarization, amplitude and phase of electromagnetic wave on a subwavelength scale. However, confining electromagnetic waves to a deep-subwavelength scale generally is at the cost of a large loss, such as radiation loss, Ohmic loss. Interestingly, non-Hermitian physics provides us a new way to transform the disadvantage of loss into a new degree of freedom in metasurface design, paving the way to expanding the functionalities of metasurfaces. In recent years, the extraordinary effects in the non-Hermitian electromagnetic metasurfaces have attracted a lot of attention. In this review, we discuss the perfect absorption, exceptional points and surfaces waves of non-Hermitian electromagnetic metasurfaces, and point out the challenges and potentials in this field.
      通信作者: 罗杰, luojie@suda.edu.cn
      Corresponding author: Luo Jie, luojie@suda.edu.cn
    [1]

    Cui T J, Smith D R, Liu R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer)

    [2]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons, Inc. )

    [3]

    Cai W, Shalaev V 2009 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [4]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [5]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [6]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889Google Scholar

    [7]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1Google Scholar

    [8]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [9]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [10]

    Chen H, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [11]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 2017 1700624

    [12]

    Turpin J P, Bossard J A, Morgan K L, Werner D H, Werner P L 2014 Int. J. Antennas Propag. 2014 1

    [13]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [14]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [15]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [16]

    邓俊鸿, 李贵新 2017 物理学报 66 147803Google Scholar

    Deng J H, Li G X 2017 Acta Phys. Sin. 66 147803Google Scholar

    [17]

    Krasnok A, Tymchenko M, Alù A 2018 Mater. Today 21 8Google Scholar

    [18]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 2018 1800415

    [19]

    Neshev D, Aharonovich I 2018 Light Sci. Appl. 7 58Google Scholar

    [20]

    Chen M, Kim M, Wong A M H, Eleftheriades G V 2018 Nanophotonics 7 1207Google Scholar

    [21]

    Ataloglou V G, Chen M, Kim M, Eleftheriades G V 2021 IEEE J. Microwaves 1 374Google Scholar

    [22]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [23]

    Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 eaat3100Google Scholar

    [24]

    Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692Google Scholar

    [25]

    Zang X, Yao B, Chen L, Xie J, Guo X V, Balakin A P, Shkurinov A, Zhuang S 2021 Light:Advanced Manufacturing 2 1Google Scholar

    [26]

    Du K, Barkaoui H, Zhang X, Jin L, Song Q, Xiao S 2022 Nanophotonics 11 1761Google Scholar

    [27]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [28]

    Kamali S M, Arbabi E, Arbabi A, Faraon A 2018 Nanophotonics 7 1041Google Scholar

    [29]

    Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Yang P, Wang S, Duan H 2020 Nanophotonics 9 3755Google Scholar

    [30]

    范庆斌, 徐挺 2017 物理学报 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [31]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [32]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427Google Scholar

    [33]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [34]

    Sun S, Yang K, Wang C, Juan T, Chen W T, Liao C Y, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [35]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [36]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [37]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar

    [38]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [39]

    Luo J, Chu H, Peng R, Wang M, Li J, Lai Y 2021 Light Sci. Appl. 10 89Google Scholar

    [40]

    Fan H, Li J, Lai Y, Luo J 2021 Phys. Rev. Appl. 16 044064Google Scholar

    [41]

    Ma Z, Fan H, Zhou H, Huang M, Luo J 2021 Opt. Express 29 39186Google Scholar

    [42]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [43]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [44]

    Wang S, Wu P C, Su V, Lai Y, Chu C H, Chen J, Lu S, Chen J, Xu B, Kuan C, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [45]

    Wang S, Wu P C, Su V, Lai Y, Chen M, Kuo H Y, Chen B H, Chen Y H, Huang T, Wang J, Lin R, Kuan C, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [46]

    Li L, Liu Z, Ren X, Wang S, Su V, Chen M, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P 2020 Science 368 1487Google Scholar

    [47]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [48]

    Huang L, Chen X, Muhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808Google Scholar

    [49]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [50]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [51]

    Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567Google Scholar

    [52]

    Jiang S, Xiong X, Hu Y, Hu Y, Ma G, Peng R, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [53]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar

    [54]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [55]

    Chu H, Li Q, Liu B, Luo J, Sun S, Hang Z H, Zhou L, Lai Y 2018 Light Sci. Appl. 7 50Google Scholar

    [56]

    Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383Google Scholar

    [57]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [58]

    Baranov D G, Zuev D A, Lepeshov S I, Kotov O V, Krasnok A E, Evlyukhin A B, Chichkov B N 2017 Optica 4 814Google Scholar

    [59]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [60]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249

    [61]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 1

    [62]

    Feng L, ElGanainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [63]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11Google Scholar

    [64]

    Qi B, Chen H Z, Ge L, Berini P, Ma R M 2019 Adv. Opt. Mater. 7 1900694Google Scholar

    [65]

    Huang Y, Shen Y, Min C, Fan S, Veronis G 2017 Nanophotonics 6 977Google Scholar

    [66]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [67]

    Özdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [68]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, Chen Y F 2019 Adv. Mater. 2019 1903639

    [69]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [70]

    Wiersig J 2020 Photonics Res. 8 1457Google Scholar

    [71]

    Krasnok A, Nefedkin N, Alu A 2021 IEEE Antennas Propag. Mag. 63 110Google Scholar

    [72]

    Li Z, Cao G, Li C, Dong S, Deng Y, Liu X, Ho J S, Qiu C 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [73]

    齐慧欣, 王晓晓, 胡小永, 龚旗煌 2020 红外与激光工程 49 20201029Google Scholar

    Qi H X, Wang X X, Hu X Y, Q H 2020 Infrared Laser Eng. 49 20201029Google Scholar

    [74]

    Fan Y, Liang H, Li J, Tsai D P, Zhang S 2022 ACS Photonics DOI: 10.1021/acsphotonics.2 c00816

    [75]

    Miri M A, LiKamWa P, Christodoulides D N 2012 Opt. Lett. 37 764Google Scholar

    [76]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [77]

    Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K, Rotter S 2014 Nat. Commun. 5 4034Google Scholar

    [78]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [79]

    Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M, Feng L 2016 Science 353 464Google Scholar

    [80]

    Longhi S 2010 Phys. Rev. A 82 031801(R

    [81]

    Gu Z, Zhang N, Lyu Q, Li M, Xiao S, Song Q 2016 Laser Photonics Rev. 10 588Google Scholar

    [82]

    Wong Z J, Xu Y, Kim J, O'Brien K, Wang Y, Feng L, Zhang X 2016 Nat. Photonics 10 796Google Scholar

    [83]

    Bai P, Ding K, Wang G, Luo J, Zhang Z, Chan C T, Wu Y, Lai Y 2016 Phys. Rev. A 94 063841Google Scholar

    [84]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [85]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [86]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [87]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S, Joannopoulos J D, Soljačić M 2015 Nature 525 354Google Scholar

    [88]

    Luo L, Shao Y, Li J, Fan R, Peng R, Wang M, Luo J, Lai Y 2021 Opt. Express 29 14345Google Scholar

    [89]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [90]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2020 Phys. Rev. Appl. 15 014009

    [91]

    Assawaworrarit S, Fan S 2020 Nat. Electron. 3 273Google Scholar

    [92]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901Google Scholar

    [93]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187Google Scholar

    [94]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [95]

    Wang S, Hou B, Lu W, Chen Y, Zhang Z Q, Chan C T 2019 Nat. Commun. 10 832Google Scholar

    [96]

    Lai Y, Lu Y, Suh M, Yuan Z, Vahala K 2019 Nature 576 65Google Scholar

    [97]

    Dong Z, Li Z, Yang F, Qiu C, Ho J S 2019 Nat. Electron. 2 335Google Scholar

    [98]

    De Carlo M, De Leonardis F, Soref R A, Colatorti L, Passaro V M N 2022 Sensors-Basel 22 3977Google Scholar

    [99]

    Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S 2014 Laser Photonics Rev. 8 495Google Scholar

    [100]

    Ra'Di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar

    [101]

    Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064Google Scholar

    [102]

    Alaee R, Albooyeh M, Rockstuhl C 2017 J. Phys. D 50 503002Google Scholar

    [103]

    Feng L, Huo P, Liang Y, Xu T 2019 Adv. Mater. 2019 1903787

    [104]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [105]

    Lawrence M, Xu N, Zhang X, Cong L, Han J, Zhang W, Zhang S 2014 Phys. Rev. Lett. 113 093901Google Scholar

    [106]

    Krešić I, Makris K G, Leonhardt U, Rotter S 2022 Phys. Rev. Lett. 128 183901Google Scholar

    [107]

    Coppolaro M, Moccia M, Castaldi G, Engheta N, Galdi V 2020 Proc. Natl. Acad. Sci. U.S.A. 117 13921Google Scholar

    [108]

    Correas-Serrano D, Alù A, Gomez-Diaz J S 2017 Phys. Rev. B 96 075436Google Scholar

    [109]

    Moccia M, Castaldi G, Alù A, Galdi V 2020 ACS Photonics 7 2064Google Scholar

    [110]

    Coppolaro M, Moccia M, Castaldi G, Alu A, Galdi V 2021 IEEE Trans. Microwave Theory Tech. 69 2060Google Scholar

    [111]

    Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [112]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [113]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [114]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [115]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901Google Scholar

    [116]

    Ye Y Q, Jin Y, He S 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 498Google Scholar

    [117]

    Sun J, Liu L, Dong G, Zhou J 2011 Opt. Express 19 21155Google Scholar

    [118]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D 43 225102Google Scholar

    [119]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104Google Scholar

    [120]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 044019Google Scholar

    [121]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [122]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443Google Scholar

    [123]

    Ding F, Jin Y, Li B, Cheng H, Mo L, He S 2014 Laser Photonics Rev. 8 946Google Scholar

    [124]

    Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J 2016 Nat. Photonics 10 393Google Scholar

    [125]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [126]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [127]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994Google Scholar

    [128]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20Google Scholar

    [129]

    Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A 2013 Nat. Mater. 12 158Google Scholar

    [130]

    Luo J, Li S, Hou B, Lai Y 2014 Phys. Rev. B 90 165128Google Scholar

    [131]

    Wang T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [132]

    Luo J, Lai Y 2019 Opt. Express 27 15800Google Scholar

    [133]

    Tong W, Luo J, Sun Z, Lai Y 2020 Appl. Phys. Express 13 032001Google Scholar

    [134]

    Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light Sci. Appl. 10 138Google Scholar

    [135]

    Huang Y, Kaj K, Chen C, Yang Z, Ul Haque S R, Zhang Y, Zhao X, Averitt R D, Zhang X 2022 ACS Photonics 9 1150Google Scholar

    [136]

    Potton R J 2004 Rep. Prog. Phys. 67 717Google Scholar

    [137]

    Fan H, Chu H, Luo H, Lai Y, Gao L, Luo J 2022 Optica 9 1138

    [138]

    Chong Y D, Ge L, Cao H, Stone A D 2010 Phys. Rev. Lett. 105 053901Google Scholar

    [139]

    Zhang J, MacDonald K F, Zheludev N I 2012 Light Sci. Appl. 1 e18Google Scholar

    [140]

    Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C 2015 Phys. Rev. B 91 220301(R

    [141]

    Wang C, Shen X, Chu H, Luo J, Zhou X, Hou B, Peng R, Wang M, Lai Y 2022 Appl. Phys. Lett. 120 171703Google Scholar

    [142]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [143]

    Luo J, Liu B, Hang Z H, Lai Y 2018 Laser Photonics Rev. 2018 1800001

    [144]

    Wang D, Luo J, Sun Z, Lai Y 2021 Opt. Express 29 5247Google Scholar

    [145]

    Bai P, Luo J, Chu H, Lu W, Lai Y 2020 Opt. Lett. 45 6635Google Scholar

    [146]

    Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar

    [147]

    Doiron C F, Naik G V 2019 Adv. Mater. 31 1904154Google Scholar

    [148]

    Yang F, Hwang A, Doiron C, Naik G V 2021 Opt. Mater. Express 11 2326Google Scholar

    [149]

    Yang F, Prasad C S, Li W, Lach R, Everitt H O, Naik G V 2022 Nanophotonics 11 1159Google Scholar

    [150]

    Liang Y, Gaimard Q, Klimov V, Uskov A, Benisty H, Ramdane A, Lupu A 2021 Phys. Rev. B 103 045419Google Scholar

    [151]

    Yu J, Ma B, Ouyang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [152]

    Zhang X, Zhang Z, Wang Q, Zhu S, Liu H 2019 ACS Photonics 6 2671Google Scholar

    [153]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [154]

    Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [155]

    Kang M, Liu F, Li J 2013 Phys. Rev. A 87 053824Google Scholar

    [156]

    Park S H, Lee S, Baek S, Ha T, Lee S, Min B, Zhang S, Lawrence M, Kim T 2020 Nanophotonics 9 1031Google Scholar

    [157]

    Kang M, Chen J, Chong Y D 2016 Phys. Rev. A 94 033834Google Scholar

    [158]

    Wang D, Li C, Zhang C, Kang M, Zhang X, Jin B, Tian Z, Li Y, Zhang S, Han J, Zhang W 2017 Appl. Phys. Lett. 110 021104Google Scholar

    [159]

    Jin B, Tan W, Zhang C, Wu J, Chen J, Zhang S, Wu P 2018 Adv. Theory Simul. 1 1800070Google Scholar

    [160]

    Li J, Fu J, Liao Q, Ke S 2019 J. Opt. Soc. Am. B:Opt. Phys. 36 2492Google Scholar

    [161]

    Cao T, Cao Y, Fang L 2019 Nanoscale 11 15828Google Scholar

    [162]

    Li S, Zhang X, Xu Q, Liu M, Kang M, Han J, Zhang W 2020 Opt. Express 28 20083Google Scholar

    [163]

    Leung H M, Gao W, Zhang R, Zhao Q, Wang X, Chan C T, Li J, Tam W Y 2020 Opt. Express 28 503Google Scholar

    [164]

    Xu J, Ouyang S, Luo L, Shen Y, Zou L, Tan Z, Deng X 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1847Google Scholar

    [165]

    Baek S, Park S H, Oh D, Lee K, Lee S, Lim H, Ha T, Park H, Zhang S, Yang L, Min B, Kim T T 2022 arXiv: 2208.10675 [physics.optics]

    [166]

    Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H, Richter A 2001 Phys. Rev. Lett. 86 787Google Scholar

    [167]

    Gu X, Bai R, Zhang C, Jin X R, Zhang Y Q, Zhang S, Lee Y P 2017 Opt. Express 25 11778Google Scholar

    [168]

    Sakhdari M, Farhat M, Chen P 2017 New J. Phys. 19 65002Google Scholar

    [169]

    Chong Y D, Zhu W, Premaratne M 2014 Appl. Phys. Lett. 105 131103Google Scholar

    [170]

    Chu H, Xiong X, Gao Y, Luo J, Jing H, Li C, Peng R, Wang M, Lai Y 2021 Sci. Adv. 7 eabj0935Google Scholar

    [171]

    Ge L, Chong Y D, Stone A D 2012 Phys. Rev. A 85 023802Google Scholar

    [172]

    Fleury R, Sounas D L, Alù A 2014 Phys. Rev. Lett. 113 023903Google Scholar

    [173]

    Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018

    [174]

    Sounas D L, Fleury R, Alù A 2015 Phys. Rev. Appl. 4 014005Google Scholar

    [175]

    Ra'Di Y, Sounas D L, Alù A, Tretyakov S A 2016 Phys. Rev. B 93 235427Google Scholar

    [176]

    Luo J, Li J, Lai Y 2018 Phys. Rev. X 8 031035

    [177]

    Valagiannopoulos C A, Monticone F, Alù A 2016 J. Opt. 18 044028Google Scholar

    [178]

    Savoia S, Valagiannopoulos C A, Monticone F, Castaldi G, Galdi V 2017 Phys. Rev. B 95 115114Google Scholar

    [179]

    Kord A, Sounas D L, Alù A 2018 Phys. Rev. Appl. 10 054040Google Scholar

    [180]

    Sakhdari M, Estakhri N M, Bagci H, Chen P 2018 Phys. Rev. Appl. 10 024030Google Scholar

    [181]

    Nicolussi M, Riley J A, Pacheco-Peña V 2021 Appl. Phys. Lett. 119 263507Google Scholar

    [182]

    Liberal I, Engheta N 2017 Nat. Photonics 11 149Google Scholar

    [183]

    罗杰, 赖耘 2019 物理 48 426

    Luo J, Lai Y 2019 Physics 48 426

    [184]

    Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903Google Scholar

    [185]

    Luo J, Hang Z H, Chan C T, Lai Y 2015 Laser Photonics Rev. 9 523Google Scholar

    [186]

    Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [187]

    Thongrattanasiri S, Koppens F H L, García De Abajo F J 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [188]

    Farhat M, Yang M, Ye Z, Chen P 2020 ACS Photonics 7 2080Google Scholar

    [189]

    Ye D, Chang K, Ran L, Xin H 2014 Nat. Commun. 5 5841Google Scholar

    [190]

    Dong S, Hu G, Wang Q, Jia Y, Zhang Q, Cao G, Wang J, Chen S, Fan D, Jiang W, Li Y, Alù A, Qiu C 2020 ACS Photonics 7 3321Google Scholar

    [191]

    Cao G, Zhao C, Dong S, Liu K, Zeng Y, Zhang Q, Zhang Y, Li Y, Zhu H 2022 Opt. Laser Technol. 156 108497Google Scholar

    [192]

    Li M, Wang Z, Yin W, Li E, Chen H 2022 IEEE Trans. Antennas Propag. DOI: 10.1109/TAP.2022.3209282

    [193]

    Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M 2014 Phys. Rev. A 89 065801Google Scholar

    [194]

    Gao F, Yuan P, Sun Z, Deng J, Li Y, Jin G, Yan B 2022 Adv. Photonics Res. 3 2200019Google Scholar

    [195]

    Gao F, Sun Z, Yuan P, Deng J, Jin G, Zhou J, Liu H, Yan B 2022 Appl. Phys. Lett. 121 091701Google Scholar

    [196]

    Kang M, Zhang T, Zhao B, Sun L, Chen J 2021 Opt. Express 29 11582Google Scholar

    [197]

    Xiao S, Gear J, Rotter S, Li J 2016 New J. Phys. 18 085004Google Scholar

    [198]

    Park J, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, Lo Y, Kanté B 2020 Nat. Phys. 16 462Google Scholar

    [199]

    Chen P, Jung J 2016 Phys. Rev. Appl. 5 064018Google Scholar

    [200]

    Wu T, Zhang W, Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R, Duan P, Li J, Wang B, Shi L, Zi J, Zhang X 2020 Phys. Rev. Lett. 124 083901Google Scholar

    [201]

    Kang M, Zhu W, Rukhlenko I D 2017 Phys. Rev. A 96 063823Google Scholar

    [202]

    Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P 2021 Science 373 1133Google Scholar

    [203]

    Kolkowski R, Kovaios S, Koenderink A F 2021 Phys. Rev. Res. 3 023185Google Scholar

    [204]

    Zhao B, Sun L, Chen J 2020 Opt. Express 28 28896Google Scholar

    [205]

    Falcone F, Lopetegi T, Laso M, Baena J, Bonache J, Beruete M, Marqués R, Martín F, Sorolla M 2004 Phys. Rev. Lett. 93 197401Google Scholar

    [206]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [207]

    Luo J, Yang Y, Yao Z, Lu W, Hou B, Hang Z H, Chan C T, Lai Y 2016 Phys. Rev. Lett. 117 223901Google Scholar

    [208]

    Ji W, Luo J, Lai Y 2019 Opt. Express 27 19463Google Scholar

    [209]

    Bisharat D A J, Sievenpiper D F 2017 Phys. Rev. Lett. 119 106802Google Scholar

    [210]

    Kong X, Bisharat D J, Xiao G, Sievenpiper D F 2019 Phys. Rev. A 99 033842Google Scholar

    [211]

    Singh S, Davis R J, Bisharat D J, Lee J, Kandil S M, Wen E, Yang X, Zhou Y, Bandaru P R, Sievenpiper D F 2022 IEEE Antennas Propag. Mag. 64 51Google Scholar

    [212]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [213]

    Luo L, Luo J, Chu H, Lai Y 2021 Adv. Photonics Res. 2 2000081Google Scholar

    [214]

    Nye N S, Halawany A E, Markos C, Khajavikhan M, Christodoulides D N 2020 Phys. Rev. Appl. 13 064005Google Scholar

    [215]

    Deng Z L, Li F J, Li H, Li X, Alù A 2022 Laser Photonics Rev. 16 2100617Google Scholar

    [216]

    Zhu X, Xu Y, Zou Y, Sun X, He C, Lu M, Liu X, Chen Y 2016 Appl. Phys. Lett. 109 111101Google Scholar

    [217]

    Mortensen N A, Gonçalves P A D, Khajavikhan M, Christodoulides D N, Tserkezis C, Wolff C 2018 Optica 5 1342Google Scholar

  • 图 1  非厄米电磁超表面示意图

    Fig. 1.  Illustration of non-Hermitian electromagnetic metasurfaces.

    图 2  谐振型完美吸波超表面 (a) 左: 超表面单元结构示意图; 右: 吸波性能的仿真结果[111]; (b) 光学吸波超表面单元示意图, 顶部为金属矩形阵列[112]; (c) 光学吸波超表面单元示意图, 顶部为金属圆盘阵列[113]; (d) 基于耦合模理论的等效单通道谐振腔模型[114]; (e) 复合超表面结构单元, 不同尺寸的谐振单元在横向上排布[115]; (f) 复合超表面结构单元, 不同尺寸的谐振单元在纵向上排布[116]; (g) 拥有三个谐振频点的分形结构单元[119]

    Fig. 2.  Resonant absorbing metasurfaces. (a) Left: Illustration of the metasurface unit cell; Right: Simulated absorption spectrum[111]. (b) An optical absorbing metasurface unit cell with an array of metallic disks on the top[112]. (c) An optical absorbing metasurface unit cell with an array of rectangular metallic particles on the top[113]. (d) The equivalent single-port resonator model based on coupled mode theory[114]. (e) Composite metasurface unit cell consisting of horizontally arranged resonators of different sizes[115]. (f) Composite metasurface unit cell consisting of vertically arranged resonators of different sizes[116]. (g) Fractal unit cell exhibiting three resonant frequencies[119].

    图 3  非谐振型超宽频完美吸波超表面 (a) 左: 布儒斯特超表面示意图; 中: 原理示意图; 右: 吸波性能的仿真结果[40]; (b) 超宽频相干完美吸收的原理示意图[140]; (c) 超宽频相干完美吸收的测量装置示意图, 以及实验测得的反射率和吸收率与频率的关系[139]

    Fig. 3.  Non-resonant ultra-broadband absorbing metasurfaces. (a) Left: Illustration of the Brewster metasurface; Middle: The underlying physics; Right: Simulated absorption spectrum[40]. (b) Illustration of ultra-broadband coherent perfect absorption[140]. (c) Illustration of the experimental setup, and measured reflectance and absorptance as the function of frequency[139].

    图 4  非厄米电磁超表面的耦合理论模型 (a) 左: 两个耦合谐振单元组成的二能级系统; 右: 本征值的演化; (b) 左: 两个具有正交激励方向的偶极子组成的二能级系统; 右:本征值的演化

    Fig. 4.  Coupling model of non-Hermitian electromagnetic metasurfaces. (a) Left: A generic two-level system consisting of two coupled resonators; Right: The evolution of its eigenvalues. (b) Left: A generic two-level system consisting of two perpendicular dipoles; Right: The evolution of its eigenvalues.

    图 5  非厄米电磁超表面 (a) 左: 由开口方向垂直的开口环谐振器阵列构成的非厄米超表面; 右: 圆偏振入射波在超表面中的透射率[105]; (b) 左: 非厄米超表面单个单元的几何结构; 右: 本征态在参数空间中围绕奇异点的演化[156]

    Fig. 5.  Non-Hermitian electromagnetic metasurfaces. (a) Left: A non-Hermitian metasurfaces consisting of an array of orthogonally oriented split ring resonators; Right: The transmission of circularly polarized waves on this metasurface[105]. (b) Left: Schematic of the metasurface unit cell; Right: The evolution of the eigenstates in parameter space as the EP is encircled[156].

    图 6  (a) 非厄米电磁超表面的散射理论模型; (b): 本征值的演化

    Fig. 6.  (a) Scattering model of non-Hermitian electromagnetic metasurfaces; (b) the evolution of eigenvalues.

    图 7  PT对称电磁超表面中的奇异点及单向无反射特性 (a) 左: 由一对平衡损耗与增益的超表面构成的PT对称超表面系统示意图; 右: 奇异点诱导的单向无反射负折射现象[172]; (b) 奇异点诱导的单向无反射成像[173]; (c) 左: 当超表面之间为零折射率介质时, 系统中的两类相变奇异点趋于合并; 右: 合并奇异点诱导的对杂质免疫的完美传输效应[176]

    Fig. 7.  EPs and unidirectional reflectionless properties of PT-symmetric electromagnetic metasurfaces. (a) Left: Illustration of a PT-symmetric metasurface system composed of a pair of metasurfaces with balanced loss and gain; Right: EP-induced unidirectional reflectionless negative refraction[172]. (b) EP-induced unidirectional reflectionless imaging[173]. (c) Left: Two classes of EPs tend to coalesce into one when the material between the two metasurface is an zero-index medium; Right: Coalesced EP-induced impurity-immune perfect wave transmission[176].

    图 8  非厄米超表面中奇异点在传感方面的应用 (a) 左: Diabolic点(DP)的频率分裂量与微扰强度$\varepsilon $的关系; 右: 奇异点的频率分裂量与微扰强度$\varepsilon $的关系[94]; (b) 左: 由上下两层在横向上错位的金条阵列组成的等离激元超表面; 右: 在奇异点下频率分裂量随微扰强度$\varepsilon $的变化[198]

    Fig. 8.  Sensing applications of EPs in non-Hermitian metasurfaces. (a) Left: Frequency splitting of DP versus the perturbation strength$\varepsilon $; Right: Frequency splitting of EP versus the perturbation strength $\varepsilon $[94]. (b) Left: A plasmonic metasurface composed of two layers of gold bars with a lateral shift; Right: The frequency splitting of EP versus the perturbation strength $\varepsilon $ [198].

    图 9  非厄米超表面中奇异点在相位操控上的应用 (a) 左: 超表面结构单元示意图; 右: 实验样品照片图[163]; (b) 实验测得的交叉偏振衍射图样随垂直狭槽的间距的变化[163]

    Fig. 9.  Phase control with EPs in non-Hermitian metasurfaces. (a) Left: illustration of the metasurface unit cell. Right: The photograph of the fricated sample[163]. (b) Experimental cross-polarization diffraction patterns for different separation distance between orthogonal slots[163].

    图 10  非厄米电磁超表面上的奇异表面波 (a) 左: 各向异性非厄米超表面上的自准直表面等离激元波; 右: 基于的石墨烯的设计的各向异性非厄米超表面[108]; (b) 左: PT对称超表面上的线波示意图; 右: 线波的仿真结果[109]

    Fig. 10.  Extraordinary surface waves on non-Hermitian electromagnetic metasurfaces. (a) Left: Surface plasmon canalization on an anisotropic non-Hermitian metasurface; Right: The graphene-based anisotropic non-Hermitian metasurface[108]. (b) Left: Line waves on a PT-symmetric metasurface. Right: The simulation results[109].

  • [1]

    Cui T J, Smith D R, Liu R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer)

    [2]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons, Inc. )

    [3]

    Cai W, Shalaev V 2009 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [4]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [5]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [6]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889Google Scholar

    [7]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1Google Scholar

    [8]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [9]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [10]

    Chen H, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [11]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 2017 1700624

    [12]

    Turpin J P, Bossard J A, Morgan K L, Werner D H, Werner P L 2014 Int. J. Antennas Propag. 2014 1

    [13]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [14]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [15]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [16]

    邓俊鸿, 李贵新 2017 物理学报 66 147803Google Scholar

    Deng J H, Li G X 2017 Acta Phys. Sin. 66 147803Google Scholar

    [17]

    Krasnok A, Tymchenko M, Alù A 2018 Mater. Today 21 8Google Scholar

    [18]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 2018 1800415

    [19]

    Neshev D, Aharonovich I 2018 Light Sci. Appl. 7 58Google Scholar

    [20]

    Chen M, Kim M, Wong A M H, Eleftheriades G V 2018 Nanophotonics 7 1207Google Scholar

    [21]

    Ataloglou V G, Chen M, Kim M, Eleftheriades G V 2021 IEEE J. Microwaves 1 374Google Scholar

    [22]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [23]

    Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 eaat3100Google Scholar

    [24]

    Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692Google Scholar

    [25]

    Zang X, Yao B, Chen L, Xie J, Guo X V, Balakin A P, Shkurinov A, Zhuang S 2021 Light:Advanced Manufacturing 2 1Google Scholar

    [26]

    Du K, Barkaoui H, Zhang X, Jin L, Song Q, Xiao S 2022 Nanophotonics 11 1761Google Scholar

    [27]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [28]

    Kamali S M, Arbabi E, Arbabi A, Faraon A 2018 Nanophotonics 7 1041Google Scholar

    [29]

    Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Yang P, Wang S, Duan H 2020 Nanophotonics 9 3755Google Scholar

    [30]

    范庆斌, 徐挺 2017 物理学报 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [31]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [32]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427Google Scholar

    [33]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [34]

    Sun S, Yang K, Wang C, Juan T, Chen W T, Liao C Y, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [35]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [36]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [37]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar

    [38]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [39]

    Luo J, Chu H, Peng R, Wang M, Li J, Lai Y 2021 Light Sci. Appl. 10 89Google Scholar

    [40]

    Fan H, Li J, Lai Y, Luo J 2021 Phys. Rev. Appl. 16 044064Google Scholar

    [41]

    Ma Z, Fan H, Zhou H, Huang M, Luo J 2021 Opt. Express 29 39186Google Scholar

    [42]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [43]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [44]

    Wang S, Wu P C, Su V, Lai Y, Chu C H, Chen J, Lu S, Chen J, Xu B, Kuan C, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [45]

    Wang S, Wu P C, Su V, Lai Y, Chen M, Kuo H Y, Chen B H, Chen Y H, Huang T, Wang J, Lin R, Kuan C, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [46]

    Li L, Liu Z, Ren X, Wang S, Su V, Chen M, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P 2020 Science 368 1487Google Scholar

    [47]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [48]

    Huang L, Chen X, Muhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808Google Scholar

    [49]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [50]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [51]

    Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567Google Scholar

    [52]

    Jiang S, Xiong X, Hu Y, Hu Y, Ma G, Peng R, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [53]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar

    [54]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [55]

    Chu H, Li Q, Liu B, Luo J, Sun S, Hang Z H, Zhou L, Lai Y 2018 Light Sci. Appl. 7 50Google Scholar

    [56]

    Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383Google Scholar

    [57]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [58]

    Baranov D G, Zuev D A, Lepeshov S I, Kotov O V, Krasnok A E, Evlyukhin A B, Chichkov B N 2017 Optica 4 814Google Scholar

    [59]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [60]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249

    [61]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 1

    [62]

    Feng L, ElGanainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [63]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11Google Scholar

    [64]

    Qi B, Chen H Z, Ge L, Berini P, Ma R M 2019 Adv. Opt. Mater. 7 1900694Google Scholar

    [65]

    Huang Y, Shen Y, Min C, Fan S, Veronis G 2017 Nanophotonics 6 977Google Scholar

    [66]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [67]

    Özdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [68]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, Chen Y F 2019 Adv. Mater. 2019 1903639

    [69]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [70]

    Wiersig J 2020 Photonics Res. 8 1457Google Scholar

    [71]

    Krasnok A, Nefedkin N, Alu A 2021 IEEE Antennas Propag. Mag. 63 110Google Scholar

    [72]

    Li Z, Cao G, Li C, Dong S, Deng Y, Liu X, Ho J S, Qiu C 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [73]

    齐慧欣, 王晓晓, 胡小永, 龚旗煌 2020 红外与激光工程 49 20201029Google Scholar

    Qi H X, Wang X X, Hu X Y, Q H 2020 Infrared Laser Eng. 49 20201029Google Scholar

    [74]

    Fan Y, Liang H, Li J, Tsai D P, Zhang S 2022 ACS Photonics DOI: 10.1021/acsphotonics.2 c00816

    [75]

    Miri M A, LiKamWa P, Christodoulides D N 2012 Opt. Lett. 37 764Google Scholar

    [76]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [77]

    Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K, Rotter S 2014 Nat. Commun. 5 4034Google Scholar

    [78]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [79]

    Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M, Feng L 2016 Science 353 464Google Scholar

    [80]

    Longhi S 2010 Phys. Rev. A 82 031801(R

    [81]

    Gu Z, Zhang N, Lyu Q, Li M, Xiao S, Song Q 2016 Laser Photonics Rev. 10 588Google Scholar

    [82]

    Wong Z J, Xu Y, Kim J, O'Brien K, Wang Y, Feng L, Zhang X 2016 Nat. Photonics 10 796Google Scholar

    [83]

    Bai P, Ding K, Wang G, Luo J, Zhang Z, Chan C T, Wu Y, Lai Y 2016 Phys. Rev. A 94 063841Google Scholar

    [84]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [85]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [86]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [87]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S, Joannopoulos J D, Soljačić M 2015 Nature 525 354Google Scholar

    [88]

    Luo L, Shao Y, Li J, Fan R, Peng R, Wang M, Luo J, Lai Y 2021 Opt. Express 29 14345Google Scholar

    [89]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [90]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2020 Phys. Rev. Appl. 15 014009

    [91]

    Assawaworrarit S, Fan S 2020 Nat. Electron. 3 273Google Scholar

    [92]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901Google Scholar

    [93]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187Google Scholar

    [94]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [95]

    Wang S, Hou B, Lu W, Chen Y, Zhang Z Q, Chan C T 2019 Nat. Commun. 10 832Google Scholar

    [96]

    Lai Y, Lu Y, Suh M, Yuan Z, Vahala K 2019 Nature 576 65Google Scholar

    [97]

    Dong Z, Li Z, Yang F, Qiu C, Ho J S 2019 Nat. Electron. 2 335Google Scholar

    [98]

    De Carlo M, De Leonardis F, Soref R A, Colatorti L, Passaro V M N 2022 Sensors-Basel 22 3977Google Scholar

    [99]

    Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S 2014 Laser Photonics Rev. 8 495Google Scholar

    [100]

    Ra'Di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar

    [101]

    Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064Google Scholar

    [102]

    Alaee R, Albooyeh M, Rockstuhl C 2017 J. Phys. D 50 503002Google Scholar

    [103]

    Feng L, Huo P, Liang Y, Xu T 2019 Adv. Mater. 2019 1903787

    [104]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [105]

    Lawrence M, Xu N, Zhang X, Cong L, Han J, Zhang W, Zhang S 2014 Phys. Rev. Lett. 113 093901Google Scholar

    [106]

    Krešić I, Makris K G, Leonhardt U, Rotter S 2022 Phys. Rev. Lett. 128 183901Google Scholar

    [107]

    Coppolaro M, Moccia M, Castaldi G, Engheta N, Galdi V 2020 Proc. Natl. Acad. Sci. U.S.A. 117 13921Google Scholar

    [108]

    Correas-Serrano D, Alù A, Gomez-Diaz J S 2017 Phys. Rev. B 96 075436Google Scholar

    [109]

    Moccia M, Castaldi G, Alù A, Galdi V 2020 ACS Photonics 7 2064Google Scholar

    [110]

    Coppolaro M, Moccia M, Castaldi G, Alu A, Galdi V 2021 IEEE Trans. Microwave Theory Tech. 69 2060Google Scholar

    [111]

    Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [112]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [113]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [114]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [115]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901Google Scholar

    [116]

    Ye Y Q, Jin Y, He S 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 498Google Scholar

    [117]

    Sun J, Liu L, Dong G, Zhou J 2011 Opt. Express 19 21155Google Scholar

    [118]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D 43 225102Google Scholar

    [119]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104Google Scholar

    [120]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 044019Google Scholar

    [121]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [122]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443Google Scholar

    [123]

    Ding F, Jin Y, Li B, Cheng H, Mo L, He S 2014 Laser Photonics Rev. 8 946Google Scholar

    [124]

    Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J 2016 Nat. Photonics 10 393Google Scholar

    [125]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [126]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [127]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994Google Scholar

    [128]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20Google Scholar

    [129]

    Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A 2013 Nat. Mater. 12 158Google Scholar

    [130]

    Luo J, Li S, Hou B, Lai Y 2014 Phys. Rev. B 90 165128Google Scholar

    [131]

    Wang T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [132]

    Luo J, Lai Y 2019 Opt. Express 27 15800Google Scholar

    [133]

    Tong W, Luo J, Sun Z, Lai Y 2020 Appl. Phys. Express 13 032001Google Scholar

    [134]

    Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light Sci. Appl. 10 138Google Scholar

    [135]

    Huang Y, Kaj K, Chen C, Yang Z, Ul Haque S R, Zhang Y, Zhao X, Averitt R D, Zhang X 2022 ACS Photonics 9 1150Google Scholar

    [136]

    Potton R J 2004 Rep. Prog. Phys. 67 717Google Scholar

    [137]

    Fan H, Chu H, Luo H, Lai Y, Gao L, Luo J 2022 Optica 9 1138

    [138]

    Chong Y D, Ge L, Cao H, Stone A D 2010 Phys. Rev. Lett. 105 053901Google Scholar

    [139]

    Zhang J, MacDonald K F, Zheludev N I 2012 Light Sci. Appl. 1 e18Google Scholar

    [140]

    Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C 2015 Phys. Rev. B 91 220301(R

    [141]

    Wang C, Shen X, Chu H, Luo J, Zhou X, Hou B, Peng R, Wang M, Lai Y 2022 Appl. Phys. Lett. 120 171703Google Scholar

    [142]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [143]

    Luo J, Liu B, Hang Z H, Lai Y 2018 Laser Photonics Rev. 2018 1800001

    [144]

    Wang D, Luo J, Sun Z, Lai Y 2021 Opt. Express 29 5247Google Scholar

    [145]

    Bai P, Luo J, Chu H, Lu W, Lai Y 2020 Opt. Lett. 45 6635Google Scholar

    [146]

    Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar

    [147]

    Doiron C F, Naik G V 2019 Adv. Mater. 31 1904154Google Scholar

    [148]

    Yang F, Hwang A, Doiron C, Naik G V 2021 Opt. Mater. Express 11 2326Google Scholar

    [149]

    Yang F, Prasad C S, Li W, Lach R, Everitt H O, Naik G V 2022 Nanophotonics 11 1159Google Scholar

    [150]

    Liang Y, Gaimard Q, Klimov V, Uskov A, Benisty H, Ramdane A, Lupu A 2021 Phys. Rev. B 103 045419Google Scholar

    [151]

    Yu J, Ma B, Ouyang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [152]

    Zhang X, Zhang Z, Wang Q, Zhu S, Liu H 2019 ACS Photonics 6 2671Google Scholar

    [153]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [154]

    Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [155]

    Kang M, Liu F, Li J 2013 Phys. Rev. A 87 053824Google Scholar

    [156]

    Park S H, Lee S, Baek S, Ha T, Lee S, Min B, Zhang S, Lawrence M, Kim T 2020 Nanophotonics 9 1031Google Scholar

    [157]

    Kang M, Chen J, Chong Y D 2016 Phys. Rev. A 94 033834Google Scholar

    [158]

    Wang D, Li C, Zhang C, Kang M, Zhang X, Jin B, Tian Z, Li Y, Zhang S, Han J, Zhang W 2017 Appl. Phys. Lett. 110 021104Google Scholar

    [159]

    Jin B, Tan W, Zhang C, Wu J, Chen J, Zhang S, Wu P 2018 Adv. Theory Simul. 1 1800070Google Scholar

    [160]

    Li J, Fu J, Liao Q, Ke S 2019 J. Opt. Soc. Am. B:Opt. Phys. 36 2492Google Scholar

    [161]

    Cao T, Cao Y, Fang L 2019 Nanoscale 11 15828Google Scholar

    [162]

    Li S, Zhang X, Xu Q, Liu M, Kang M, Han J, Zhang W 2020 Opt. Express 28 20083Google Scholar

    [163]

    Leung H M, Gao W, Zhang R, Zhao Q, Wang X, Chan C T, Li J, Tam W Y 2020 Opt. Express 28 503Google Scholar

    [164]

    Xu J, Ouyang S, Luo L, Shen Y, Zou L, Tan Z, Deng X 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1847Google Scholar

    [165]

    Baek S, Park S H, Oh D, Lee K, Lee S, Lim H, Ha T, Park H, Zhang S, Yang L, Min B, Kim T T 2022 arXiv: 2208.10675 [physics.optics]

    [166]

    Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H, Richter A 2001 Phys. Rev. Lett. 86 787Google Scholar

    [167]

    Gu X, Bai R, Zhang C, Jin X R, Zhang Y Q, Zhang S, Lee Y P 2017 Opt. Express 25 11778Google Scholar

    [168]

    Sakhdari M, Farhat M, Chen P 2017 New J. Phys. 19 65002Google Scholar

    [169]

    Chong Y D, Zhu W, Premaratne M 2014 Appl. Phys. Lett. 105 131103Google Scholar

    [170]

    Chu H, Xiong X, Gao Y, Luo J, Jing H, Li C, Peng R, Wang M, Lai Y 2021 Sci. Adv. 7 eabj0935Google Scholar

    [171]

    Ge L, Chong Y D, Stone A D 2012 Phys. Rev. A 85 023802Google Scholar

    [172]

    Fleury R, Sounas D L, Alù A 2014 Phys. Rev. Lett. 113 023903Google Scholar

    [173]

    Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018

    [174]

    Sounas D L, Fleury R, Alù A 2015 Phys. Rev. Appl. 4 014005Google Scholar

    [175]

    Ra'Di Y, Sounas D L, Alù A, Tretyakov S A 2016 Phys. Rev. B 93 235427Google Scholar

    [176]

    Luo J, Li J, Lai Y 2018 Phys. Rev. X 8 031035

    [177]

    Valagiannopoulos C A, Monticone F, Alù A 2016 J. Opt. 18 044028Google Scholar

    [178]

    Savoia S, Valagiannopoulos C A, Monticone F, Castaldi G, Galdi V 2017 Phys. Rev. B 95 115114Google Scholar

    [179]

    Kord A, Sounas D L, Alù A 2018 Phys. Rev. Appl. 10 054040Google Scholar

    [180]

    Sakhdari M, Estakhri N M, Bagci H, Chen P 2018 Phys. Rev. Appl. 10 024030Google Scholar

    [181]

    Nicolussi M, Riley J A, Pacheco-Peña V 2021 Appl. Phys. Lett. 119 263507Google Scholar

    [182]

    Liberal I, Engheta N 2017 Nat. Photonics 11 149Google Scholar

    [183]

    罗杰, 赖耘 2019 物理 48 426

    Luo J, Lai Y 2019 Physics 48 426

    [184]

    Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903Google Scholar

    [185]

    Luo J, Hang Z H, Chan C T, Lai Y 2015 Laser Photonics Rev. 9 523Google Scholar

    [186]

    Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [187]

    Thongrattanasiri S, Koppens F H L, García De Abajo F J 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [188]

    Farhat M, Yang M, Ye Z, Chen P 2020 ACS Photonics 7 2080Google Scholar

    [189]

    Ye D, Chang K, Ran L, Xin H 2014 Nat. Commun. 5 5841Google Scholar

    [190]

    Dong S, Hu G, Wang Q, Jia Y, Zhang Q, Cao G, Wang J, Chen S, Fan D, Jiang W, Li Y, Alù A, Qiu C 2020 ACS Photonics 7 3321Google Scholar

    [191]

    Cao G, Zhao C, Dong S, Liu K, Zeng Y, Zhang Q, Zhang Y, Li Y, Zhu H 2022 Opt. Laser Technol. 156 108497Google Scholar

    [192]

    Li M, Wang Z, Yin W, Li E, Chen H 2022 IEEE Trans. Antennas Propag. DOI: 10.1109/TAP.2022.3209282

    [193]

    Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M 2014 Phys. Rev. A 89 065801Google Scholar

    [194]

    Gao F, Yuan P, Sun Z, Deng J, Li Y, Jin G, Yan B 2022 Adv. Photonics Res. 3 2200019Google Scholar

    [195]

    Gao F, Sun Z, Yuan P, Deng J, Jin G, Zhou J, Liu H, Yan B 2022 Appl. Phys. Lett. 121 091701Google Scholar

    [196]

    Kang M, Zhang T, Zhao B, Sun L, Chen J 2021 Opt. Express 29 11582Google Scholar

    [197]

    Xiao S, Gear J, Rotter S, Li J 2016 New J. Phys. 18 085004Google Scholar

    [198]

    Park J, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, Lo Y, Kanté B 2020 Nat. Phys. 16 462Google Scholar

    [199]

    Chen P, Jung J 2016 Phys. Rev. Appl. 5 064018Google Scholar

    [200]

    Wu T, Zhang W, Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R, Duan P, Li J, Wang B, Shi L, Zi J, Zhang X 2020 Phys. Rev. Lett. 124 083901Google Scholar

    [201]

    Kang M, Zhu W, Rukhlenko I D 2017 Phys. Rev. A 96 063823Google Scholar

    [202]

    Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P 2021 Science 373 1133Google Scholar

    [203]

    Kolkowski R, Kovaios S, Koenderink A F 2021 Phys. Rev. Res. 3 023185Google Scholar

    [204]

    Zhao B, Sun L, Chen J 2020 Opt. Express 28 28896Google Scholar

    [205]

    Falcone F, Lopetegi T, Laso M, Baena J, Bonache J, Beruete M, Marqués R, Martín F, Sorolla M 2004 Phys. Rev. Lett. 93 197401Google Scholar

    [206]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [207]

    Luo J, Yang Y, Yao Z, Lu W, Hou B, Hang Z H, Chan C T, Lai Y 2016 Phys. Rev. Lett. 117 223901Google Scholar

    [208]

    Ji W, Luo J, Lai Y 2019 Opt. Express 27 19463Google Scholar

    [209]

    Bisharat D A J, Sievenpiper D F 2017 Phys. Rev. Lett. 119 106802Google Scholar

    [210]

    Kong X, Bisharat D J, Xiao G, Sievenpiper D F 2019 Phys. Rev. A 99 033842Google Scholar

    [211]

    Singh S, Davis R J, Bisharat D J, Lee J, Kandil S M, Wen E, Yang X, Zhou Y, Bandaru P R, Sievenpiper D F 2022 IEEE Antennas Propag. Mag. 64 51Google Scholar

    [212]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [213]

    Luo L, Luo J, Chu H, Lai Y 2021 Adv. Photonics Res. 2 2000081Google Scholar

    [214]

    Nye N S, Halawany A E, Markos C, Khajavikhan M, Christodoulides D N 2020 Phys. Rev. Appl. 13 064005Google Scholar

    [215]

    Deng Z L, Li F J, Li H, Li X, Alù A 2022 Laser Photonics Rev. 16 2100617Google Scholar

    [216]

    Zhu X, Xu Y, Zou Y, Sun X, He C, Lu M, Liu X, Chen Y 2016 Appl. Phys. Lett. 109 111101Google Scholar

    [217]

    Mortensen N A, Gonçalves P A D, Khajavikhan M, Christodoulides D N, Tserkezis C, Wolff C 2018 Optica 5 1342Google Scholar

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] 王正宇, 黄飞, 薛润玉, 王正岭. 基于连续金属膜对称光栅结构的完美吸收特性. 物理学报, 2023, 72(5): 054201. doi: 10.7498/aps.72.20221701
    [6] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟. 物理学报, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [7] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] 施婷婷, 张露丹, 张帅宁, 张威. 两量子比特系统中相互作用对高阶奇异点的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220716
    [9] 施婷婷, 张露丹, 张帅宁, 张威. 两量子比特系统中相互作用对高阶奇异点的影响. 物理学报, 2022, 71(13): 130303. doi: 10.7498/aps.70.20220716
    [10] 祝可嘉, 郭志伟, 陈鸿. 实验观测非厄米系统奇异点的手性翻转现象. 物理学报, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [11] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [12] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [13] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [14] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [15] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [16] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [17] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [18] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [19] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
计量
  • 文章访问数:  8293
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-10-06
  • 上网日期:  2022-10-29
  • 刊出日期:  2022-12-24

/

返回文章
返回