搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电流焦耳热调控反转型垂直(Co/Pt)n/Co/IrMn纳米多层膜结构的交换偏置效应研究

丰家峰 魏红祥 于国强 黄辉 郭经红 韩秀峰

引用本文:
Citation:

电流焦耳热调控反转型垂直(Co/Pt)n/Co/IrMn纳米多层膜结构的交换偏置效应研究

丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰

Exchange bias effect of current Joule thermally modulated inverted vertical (Co/Pt) n/Co/IrMn nanomultilayers

Feng Jia-Feng, Wei Hong-Xiang, Yu Guo-Qiang, Huang Hui, Guo Jing-Hong, Han Xiu-Feng
PDF
HTML
导出引用
  • 交换偏置效应影响磁敏传感器中的关键性能参数. 在外加磁场辅助下, 本文提出一种电流产生的焦耳热调控交换偏置效应的研究方法. 通过该方法, 系统调控了反转型垂直纳米多层膜结构(Co/Pt)n/Co/IrMn(简称垂直多层膜结构, n+1是Co层周期数)的面内交换偏置效应, 不仅连续改变了交换偏置场Heb大小, 而且实现了Heb的翻转. 在垂直多层膜结构中, 如果固定外加磁场Hp (脉冲电流IDC)后连续改变IDC (Hp)的大小可以连续调控Heb的数值; 如果固定Hp(IDC)后同时改变IDC(Hp)的大小和方向, 则在较大IDC时可实现Heb的翻转. 结果表明, 该方法可以用来原位调控磁敏传感器的线性磁场范围和灵敏度等关键性能参数, 对磁敏传感器的优化研究具有重要的借鉴意义.
    The exchange bias has a crucial influence on the key performance parameters of magneroresistive sensor, which has wide applications in many fields. This paper presents a method that uses the Joule heating effect combined with a magnetic field to modulate the exchange bias in magnetic multilayers. By this method, we systematically modulate the in-plane exchange bias field (Heb) in the inverted (Co/Pt)n/Co/IrMn structure (n + 1 is the repetition of the Co layers), here the thickness of the Pt layer is smaller than that of the Co layer. In these inverted structures, the Heb can be continuously modulated by changing the amplitude of a pulse current IDC (an in-plane magnetic field Hp) after fixing an Hp (IDC). In more detail, the Heb deceases gradually by increasing the IDC and its polarity of the Heb can be reversed finally, which will not disappear even under a large IDC. Furthermore, if both the amplitude and direction of IDC (Hp) are changed, with a Hp (IDC) fixed, a reversal of Heb can be realized from positive (negative) to negative (positive) direction under a large IDC. From here, one may find that the modulation of the exchange bias in our text is totally different from the normal case one thinks, where the Heb becomes zero under a large enough IDC due to the pure heating effect. Therefore, we believe that the above results show that our method can modulate in situ the linear field range and sensitivity, which has important significance in guiding the optimization of the performance parameters of magneroresistive sensors.
      通信作者: 丰家峰, jiafengfeng@iphy.ac.cn
    • 基金项目: 国家重点研发计划项目(批准号: 2021YFB3201800, 2021YFB3201801)资助的课题.
      Corresponding author: Feng Jia-Feng, jiafengfeng@iphy.ac.cn
    • Funds: Project is supported by National Key R&D Program of China (Grant Nos. 2021YFB3201800, 2021YFB3201801).
    [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [2]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904Google Scholar

    [3]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828

    [4]

    Baibich M N, Broto J M, Fert A, Nguyen van Dau F, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [5]

    Parkin S S P, Roche K P, Samant M G, Rice P M, Beyers R B, Scheuerlein R E, O’Sullivan E J, Brown S L, Bucchigano J, Abraham D W, Lu Y, Rooks M, Trouilloud P L, Wanner R A, Gallagher W J 1999 J. Appl. Phys. 85 5828Google Scholar

    [6]

    Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221Google Scholar

    [7]

    Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R, Mauri D 1991 Phys. Rev. B 43 1297Google Scholar

    [8]

    Stamps R L 2000 J. Phys. D Appl. Phys. 33 R247Google Scholar

    [9]

    Nogué J, Schuller Ivan K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [10]

    Nogué J, Sort J, Langlais V, Skumryeva V, Suriñachb S, Muñozb J S, Barób M D 2005 Phys. Rep. 422 65Google Scholar

    [11]

    Jungblut R, Coehoorn R, Johnson M T, aan de Stegge J, Reinders A 1994 J. Appl. Phys. 75 6659Google Scholar

    [12]

    Imakita K I, Tsunoda M, Takahashi M 2004 Appl. Phys. Lett. 85 3812Google Scholar

    [13]

    Garcia F, Moritz J, Ernult F, Auffret S, Rodmacq B, Dieny B, Camarero J, Pennec Y, Pizzini S, Vogel J 2002 IEEE Trans. Magn. 38 2730Google Scholar

    [14]

    Chen J Y, Feng J F, Diao Z, Feng G, Coey J M D, Han X-F 2010 IEEE Trans. Magn. 46 1401Google Scholar

    [15]

    Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005Google Scholar

    [16]

    Zaag P J van der, Feiner L F, Wolf R M, Borchers J A, Ijiri Y, Erwin R W 2000 Physica B 276 638

    [17]

    Eckert J C, Stern N P, Snowden D S, Sparks P D, Carey M J 2003 J. Appl. Phys. 93 6608Google Scholar

    [18]

    Devasahayam A J, Sides P J, Kryder M H 1998 J. Appl. Phys. 83 7216Google Scholar

    [19]

    Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09D728Google Scholar

    [20]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508Google Scholar

    [21]

    Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R, Dynes R C 2013 Phys. Rev. Lett. 110 067202Google Scholar

    [22]

    Shiratsuchi Y, Tao Y R, Toyoki K, Nakatani R 2021 Magnetochemistry 7 36Google Scholar

    [23]

    Tang X L, Zhang H W, Su H, Zhong Z Y, Jing Y L 2007 Appl. Phys. Lett. 91 122504Google Scholar

    [24]

    Kim H J, Je S G, Jung D H, Lee K S, Hong J 2019 Appl. Phys. Lett. 115 022401Google Scholar

    [25]

    Papusoi C, Sousa R C, Dieny B, Prejbeanu I L, Conraux Y, Mackay K, Nozières J P 2008 J. Appl. Phys. 104 013915Google Scholar

    [26]

    Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904Google Scholar

    [27]

    Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar

    [28]

    Jenkins S, Chantrell R W, Evans R F L 2021 Phys. Rev. B 103 014424Google Scholar

    [29]

    Baltz V, Sort J, Landis S, Rodmacq B, Dieny B, 2005 Phys. Rev. Lett. 94 117201

    [30]

    Shi Z, Du J, Zhou S M 2014 Chin. Phys. B 23 027503Google Scholar

    [31]

    Zhou X F, Chen X Z, You Y F, Liao L Y, Bai H, Zhang R Q, Zhou Y J, Wu H Q, Song C, Pan F 2020 Phys. Rev. Appl. 14 054037Google Scholar

    [32]

    陈栖洲, 汪学锋, 张怀武, 钟智勇 2011 磁性材料及器件 42 4Google Scholar

    Chen X Z, Wang X F, Zhang H W, Zhong Z Y 2011 J. Magn. Mater. Devices 42 4Google Scholar

    [33]

    Ranjbar S, Mahdawi M, Oogane M, Ando Y 2020 AIP Adv. 10 025119Google Scholar

  • 图 1  (a)条状结构示意图(脉冲电流IDC和面内磁场H见图中标识); (b)和(c)垂直多层膜结构在初始态和大IDC施加后的各磁性层磁矩分布示意图

    Fig. 1.  (a) Schematic strip structure (a pulse current IDC and an in-plane magnetic field H are marked); (b) and (c) the magnetic moments for n+1 at the initial state and under a large IDC.

    图 2  (a)脉冲电流(IDC)产生的焦耳热对应的样品温度与IDC的关系; (b)n+1 = 2的垂直多层膜结构的Heb随着温度的变化关系. (a)中插图是n+1 = 2的垂直多层膜结构的RH随着温度的线性变化关系

    Fig. 2.  The sample temperature due to the Joule heating as a function of IDC; (b) the temperature dependence of Heb for n+1 = 2. The insert in (a) shows the linear relation between RH and the temperature for n+1 = 2.

    图 3  n+1 = 2的垂直多层膜结构在IDC = 1 mA(a)和49 mA(b)时的面内RH-H曲线. 各Co层磁矩随着外加磁场的转变也放在了图中

    Fig. 3.  The in-plane RH-H curves for n+1 = 2 under IDC = 1 mA (a) and 49 mA (b). The magnetic moments of each Co layer as a function of the field are also given.

    图 4  (a)和(b)分别是n+1 = 5的垂直多层膜结构在不同负、正电流下的面内RH-H曲线; (c) n+1 = 5的垂直多层膜结构的Heb随着IDC的变化关系

    Fig. 4.  (a) and (b) The in-plane RH-H curves for n+1 = 5 under different negative and positive IDC; (c) the IDC dependence of Heb for n+1 = 5.

    图 5  (a)—(c) n+1 = 2和3的垂直多层膜结构的面内RH-H原始曲线以及施加不同Hp和2 s/45 mA后、4 kOe和2 s/±49 mA后和±2 kOe和2 s/–40 mA后再在1 mA时测量获得的面内RH-H曲线; (d)(c)图在小磁场范围的RH-H曲线放大图, 显示了界面Co层的磁矩信号

    Fig. 5.  (a)–(c) The in-plane RH-H curves for n+1 = 2 (3) after applied different Hp and IDC, taken at 1 mA; (d) the zoom of the in-plane RH-H curves shown in (c), which only gives the moment variation of the interface Co layer.

    图 6  n+1 = 2—6的垂直多层膜结构在IDC = 40 mA和Hp = 2 kOe时获得的ΔHeb, 不同n+1的垂直多层膜结构的Heb绝对值也放在了图中. 插图是n+1 = 2的垂直多层膜结构在IDC = 40 mA和Hp = 1—4 kOe时获得的ΔHeb

    Fig. 6.  The ΔHeb at IDC = 40 mA and Hp = 2 kOe for n+1. The absolute Heb changing with n+1 is also shown. The insert shows the Hp dependence of ΔHeb for n+1 = 2 at IDC = 40 mA and Hp = 1–4 kOe.

    图 7  电流焦耳热调控交换偏置所致的磁敏传感器的性能参数改变示意图

    Fig. 7.  The signal variation of magneroresistive sensors due to the modulation of the exchange bias by the current induced Joule heating.

  • [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [2]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904Google Scholar

    [3]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828

    [4]

    Baibich M N, Broto J M, Fert A, Nguyen van Dau F, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [5]

    Parkin S S P, Roche K P, Samant M G, Rice P M, Beyers R B, Scheuerlein R E, O’Sullivan E J, Brown S L, Bucchigano J, Abraham D W, Lu Y, Rooks M, Trouilloud P L, Wanner R A, Gallagher W J 1999 J. Appl. Phys. 85 5828Google Scholar

    [6]

    Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221Google Scholar

    [7]

    Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R, Mauri D 1991 Phys. Rev. B 43 1297Google Scholar

    [8]

    Stamps R L 2000 J. Phys. D Appl. Phys. 33 R247Google Scholar

    [9]

    Nogué J, Schuller Ivan K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [10]

    Nogué J, Sort J, Langlais V, Skumryeva V, Suriñachb S, Muñozb J S, Barób M D 2005 Phys. Rep. 422 65Google Scholar

    [11]

    Jungblut R, Coehoorn R, Johnson M T, aan de Stegge J, Reinders A 1994 J. Appl. Phys. 75 6659Google Scholar

    [12]

    Imakita K I, Tsunoda M, Takahashi M 2004 Appl. Phys. Lett. 85 3812Google Scholar

    [13]

    Garcia F, Moritz J, Ernult F, Auffret S, Rodmacq B, Dieny B, Camarero J, Pennec Y, Pizzini S, Vogel J 2002 IEEE Trans. Magn. 38 2730Google Scholar

    [14]

    Chen J Y, Feng J F, Diao Z, Feng G, Coey J M D, Han X-F 2010 IEEE Trans. Magn. 46 1401Google Scholar

    [15]

    Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005Google Scholar

    [16]

    Zaag P J van der, Feiner L F, Wolf R M, Borchers J A, Ijiri Y, Erwin R W 2000 Physica B 276 638

    [17]

    Eckert J C, Stern N P, Snowden D S, Sparks P D, Carey M J 2003 J. Appl. Phys. 93 6608Google Scholar

    [18]

    Devasahayam A J, Sides P J, Kryder M H 1998 J. Appl. Phys. 83 7216Google Scholar

    [19]

    Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09D728Google Scholar

    [20]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508Google Scholar

    [21]

    Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R, Dynes R C 2013 Phys. Rev. Lett. 110 067202Google Scholar

    [22]

    Shiratsuchi Y, Tao Y R, Toyoki K, Nakatani R 2021 Magnetochemistry 7 36Google Scholar

    [23]

    Tang X L, Zhang H W, Su H, Zhong Z Y, Jing Y L 2007 Appl. Phys. Lett. 91 122504Google Scholar

    [24]

    Kim H J, Je S G, Jung D H, Lee K S, Hong J 2019 Appl. Phys. Lett. 115 022401Google Scholar

    [25]

    Papusoi C, Sousa R C, Dieny B, Prejbeanu I L, Conraux Y, Mackay K, Nozières J P 2008 J. Appl. Phys. 104 013915Google Scholar

    [26]

    Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904Google Scholar

    [27]

    Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar

    [28]

    Jenkins S, Chantrell R W, Evans R F L 2021 Phys. Rev. B 103 014424Google Scholar

    [29]

    Baltz V, Sort J, Landis S, Rodmacq B, Dieny B, 2005 Phys. Rev. Lett. 94 117201

    [30]

    Shi Z, Du J, Zhou S M 2014 Chin. Phys. B 23 027503Google Scholar

    [31]

    Zhou X F, Chen X Z, You Y F, Liao L Y, Bai H, Zhang R Q, Zhou Y J, Wu H Q, Song C, Pan F 2020 Phys. Rev. Appl. 14 054037Google Scholar

    [32]

    陈栖洲, 汪学锋, 张怀武, 钟智勇 2011 磁性材料及器件 42 4Google Scholar

    Chen X Z, Wang X F, Zhang H W, Zhong Z Y 2011 J. Magn. Mater. Devices 42 4Google Scholar

    [33]

    Ranjbar S, Mahdawi M, Oogane M, Ando Y 2020 AIP Adv. 10 025119Google Scholar

  • [1] 温涛, 马宇航, 王德全, 谌浩然, 李艳芳, 许洋, 王志广. 基于巨磁阻抗效应的双模态型低噪声大量程磁传感器. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241498
    [2] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [3] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能. 物理学报, 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [4] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性. 物理学报, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [5] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥. 基于MgO磁性隧道结的五种隧穿磁电阻线性传感单元性能比较. 物理学报, 2022, 71(23): 238502. doi: 10.7498/aps.71.20221278
    [6] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [7] 曹亚庆, 黄火林, 孙仲豪, 李飞雨, 白洪亮, 张卉, 孙楠, Yung C.Liang. 基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器. 物理学报, 2019, 68(15): 158502. doi: 10.7498/aps.68.20190413
    [8] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性. 物理学报, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [9] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [10] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究. 物理学报, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [11] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应. 物理学报, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [12] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [13] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [14] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究. 物理学报, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [15] 白宇浩, 云国宏, 那日苏. 外应力对铁磁/反铁磁体系交换偏置的影响及阶跃现象. 物理学报, 2009, 58(7): 4962-4969. doi: 10.7498/aps.58.4962
    [16] 田宏玉, 胡经国, 许小勇. 铁磁/反铁磁双层膜中冷却场对交换偏置场的影响. 物理学报, 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [17] 马 梅, 蔡 蕾, 王兴福, 胡经国. 掺杂下铁磁/反铁磁双层膜中交换偏置的增强. 物理学报, 2007, 56(1): 529-534. doi: 10.7498/aps.56.529
    [18] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [19] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [20] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置. 物理学报, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
计量
  • 文章访问数:  3828
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 修回日期:  2022-09-06
  • 上网日期:  2022-12-24
  • 刊出日期:  2023-01-05

/

返回文章
返回