搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析

李磊 支钰崧 张茂林 刘增 张少辉 马万煜 许强 沈高辉 王霞 郭宇锋 唐为华

引用本文:
Citation:

关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析

李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华

Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction

Li Lei, Zhi Yu-Song, Zhang Mao-Lin, Liu Zeng, Zhang Shao-Hui, Ma Wan-Yu, Xu Qiang, Shen Gao-Hui, Wang Xia, Guo Yu-Feng, Tang Wei-Hua
PDF
HTML
导出引用
  • 鉴于紫外探测器在诸多领域的重要应用, 探寻自供电型探测器以及挖掘其内在运行机理显得尤为关键. 本文制备的Ga2O3/Al0.1Ga0.9N异质结紫外探测器能够实现对254 nm波长(UVC波段)和365 nm(UVA波段)波长紫外光的敏感探测, 并在不同方向的偏压驱动下能够实现耗尽模式和光电导模式的光探测. 这里介绍的基于Ga2O3/Al0.1Ga0.9N异质结的双波段、双模式紫外光电探测器具有理想的暗电流和光响应特性; 在5和–5 V偏压下, 在254 nm光照射下的光响应度分别为2.09和66.32 mA/W, 在365 nm光照射下的光响应度分别为0.22和34.75 mA/W. 并且仅在内建电场的作用下能够自供电运行, 对254和365 nm波长紫外光的光响应度为0.13和0.01 mA/W. 进一步, 除对材料与器件性能的表征与解析, 本文还从异质结探测器的运行机理上分析了其双波段与双模式探测特性.
    The deep-ultraviolet (DUV) photodetectors (PDs) have important applications in lots of fields. Thus, developing self-powered DUV PDs and excavating the inherent mechanism seem seriously crucial to achieving further actual applications. The construction of heterojunction can lead to many desired characteristics in optoelectronic devices. In the field of DUV photodetection, Ga2O3 has been a popular subject for constructing DUV PDs. So, it is necessary to develop self-powered Ga2O3-based DUV PDs through fabricating its heterogeneous structure. Therefore, in this work, the Ga2O3/Al0.1Ga0.9N heterojunction DUV PD is fabricated and discussed, which can achieve 254 and 365 nm DUV light photodetection. At positive voltages and negative voltages, the heterojunction PD can operate in a photoconductive mode or a depletion mode, respectively. In view of the PD performance, it displays decent dark current and DUV photoresponses. At voltage of 5 and –5 V, under 254 nm DUV light illumination, the photoresponsivity (R) is 2.09 and 66.32 mA/W, respectively, while under 365 nm DUV light illumination, R is 0.22 and 34.75 mA/W, respectively. In addition, under the built-in electric field (Ebuilt-in), R is 0.13 and 0.01 mA/W for 254 nm and 365 nm DUV light illumination, respectively. In all, the fabricated heterojunction PD displays promising prospects in the coming next-generation semiconductor photodetection technology. The results in this work indicate the potential of Ga2O3/Al0.1Ga0.9N heterojunction with high performance DUV photodetection. Furthermore, except for the characterizations of the materials and photodetector, in the end of this paper, the operating mechanism of the dual-band dual-mode heterojunction PD is analyzed through its heterogeneous energy-band diagram. It is concluded that the illustrated dual-band dual-mode Ga2O3/Al0.1Ga0.9N heterojunction can be sensitive to UVA waveband and UVC waveband in the electromagnetic spectrum, extending its photodetection region. And, the dual-mode (photoconductive mode and depletion mode) photodetection indicates two kinds of carrier transports in one PD, which can be attributed to the successful construction of the N-N tomo-type Ga2O3/Al0.1Ga0.9N heterojunction.
      通信作者: 刘增, zengliu@njupt.edu.cn ; 张少辉, shzhang2016@sinano.ac.cn ; 唐为华, whtang@njupt.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 62204125)、南京邮电大学引进人才科研启动基金 (自然科学)(批准号: XK1060921115, XK1060921002)、山西省基础研究计划(批准号:20210302123388)和山西省高等学校科技创新项目(批准号: 2021L588)资助的课题
      Corresponding author: Liu Zeng, zengliu@njupt.edu.cn ; Zhang Shao-Hui, shzhang2016@sinano.ac.cn ; Tang Wei-Hua, whtang@njupt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62204125), the Natural Science Research Starting Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications, China (Grant Nos. XK1060921115, XK1060921002), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123388), and the Scientific and Technological Innovation Programs of Higher Education Institutes of Shanxi Province, China (Grant No. 2021L588).
    [1]

    Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar

    [2]

    Shi L, Nihtianov S 2012 IEEE Sensors J. 12 2453Google Scholar

    [3]

    Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [4]

    Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [5]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [6]

    Higashiwaki M 2021 Phys. Status Solidi RRL 15 2100357Google Scholar

    [7]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T, Zhang W 2022 Adv. Opt. Mater. 10 2102055Google Scholar

    [10]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [11]

    Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y, Tang W 2022 IEEE Trans. Electron Devices 69 5595Google Scholar

    [12]

    Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y, Tang W 2022 Chin. Phys. B 31 088503Google Scholar

    [13]

    Kroemer H 1963 Proc. IEEE 51 1782Google Scholar

    [14]

    Robertson J 2000 J. Vac. Sci. Technol., B 18 1785Google Scholar

    [15]

    Liu Z, Liu Y, Wang X, Li W, Zhi Y, Wang X, Li P, Tang W 2019 J. Appl. Phys. 126 045707Google Scholar

    [16]

    Chen Y, Yang X, Zhang C, He G, Chen X, Qiao Q, Zang J, Dou W, Sun P, Deng Y, Dong L, Shan C 2022 Nano Lett. 22 4888Google Scholar

    [17]

    Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P, Tang W 2021 J. Phys. D: Appl. Phys. 54 195104Google Scholar

    [18]

    Qi X, Yue J, Ji X, Liu Z, Li S, Yan Z, Zhang M, Yang L, Li P, Guo D, Guo Y, Tang W 2022 Thin Solid Films 757 139397Google Scholar

    [19]

    Zheng Z, Wang W, Wu F, Wang Z, Shan M, Zhao Y, Liu W, Jian P, Dai J, Lu H, Chen C 2022 Opt. Express 30 21822Google Scholar

    [20]

    Gao A, Jiang W, Ma G, Liu Z, Li S, Yan Z, Sun W, Zhang S, Tang W 2022 Curr. Appl. Phys. 33 20Google Scholar

    [21]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [22]

    Sun W, Sun B, Li S, Ma G, Gao A, Jiang W, Zhang M, Li P, Liu Z, Tang W 2022 Chin. Phys. B 31 024205Google Scholar

    [23]

    Nakagomi S, Sato T, Takahashi Y, Kokubun Y 2015 Sens. Actuators, A 232 208Google Scholar

    [24]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sensors J. 11 1491Google Scholar

    [25]

    王兰喜, 陈学康, 王瑞, 曹生珠 2009 真空与低温 15 5Google Scholar

    Wang L X, Chen X K, Wang D, Cao S Z 2009 Vac. Cryogenics 15 5Google Scholar

    [26]

    Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar

    [27]

    Tung R T 2014 Appl. Phys. Rev. 1 011304Google Scholar

    [28]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [29]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [30]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [31]

    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar

    [32]

    Garrido J A, Monroy E, Izpura I, Muñoz E 1998 Semicond. Sci. Technol. 13 563Google Scholar

    [33]

    Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O, Stutzmann M 2001 Appl. Phys. Lett. 78 2503Google Scholar

    [34]

    Ma J, Zheng M, Chen C, Zhu Z, Zheng X, Chen Z, Guo Y, Liu C, Yan Y, Fang G 2018 Adv. Funct. Mater. 28 1804128Google Scholar

  • 图 1  Ga2O3/Al0.1Ga0.9 N异质结 (a) X射线衍射图谱; (b) 相应的紫外光电探测器结构示意图

    Fig. 1.  (a) The XRD pattern of the Ga2O3/Al0.1Ga0.9N heterojunction, and (b) its schematic diagram of the UV photodetector.

    图 2  (a) Al0.1Ga0.9N薄膜和 (b) Ga2O3薄膜的紫外-可见光吸收光谱, 相应的内插图分别为 (αhv)2与(hv)的函数关系曲线

    Fig. 2.  UV-vis absorbance spectrum of the (a) Al0.1Ga0.9N and (b) Ga2O3 thin films. The corresponding insets are the functions of (αhv)2 versus hv, respectively.

    图 3  Ga2O3/Al0.1Ga0.9N异质结光电探测器的对数形式的I-V特性曲线 (a) 暗条件与254 nm波长紫外光辐照; (b) 暗条件与365 nm波长紫外光辐照

    Fig. 3.  The semi-log I-V curves of the Ga2O3/Al0.1Ga0.9N heterojunction photodetector: (a) In the dark under 254 nm light illumination; (b) in the dark and under 365 nm light illumination.

    图 4  零偏压下 (a) 254 nm波长紫外光照射下的对数I-t特性曲线; (b) 365 nm波长紫外光照射下的对数I-t特性曲线

    Fig. 4.  The I-t curves under (a) 254 nm and (b) 365 nm light illumination at zero bias.

    图 5  (a) 正向偏压下、(b) 反向偏压下254 nm波长光辐照下的I-t特性曲线; (c) 正向偏压下、(d) 反向偏压下365 nm波长光辐照下的I-t特性曲线

    Fig. 5.  The I-t curves at (a) positive voltages and (b) negative voltages under the illuminations of 254 nm UV light. The I-t curvesat (c) positive voltages and (d) negative voltages under the illuminations of 365 nm UV light

    图 6  254 nm波长紫外光辐照下, 施加 (a) 正向偏压与 (b) 负偏压下的光电流与光强的关系图. 365 nm波长紫外光辐照下, 施加 (c) 正向偏压与 (d) 负偏压下的光电流与光强的关系图

    Fig. 6.  The intensity dependent photocurrent at (a) positive voltages and (b) negative voltages under illumination of 254 nm UV light. The intensity dependent photocurrent at (c) positive voltages and (d) negative voltages under illumination of 365 nm UV light.

    图 7  Ga2O3/Al0.1Ga0.9N异质结能带结构示意图

    Fig. 7.  The band diagram of the Ga2O3/Al0.1Ga0.9N heterojunction photodetector.

    表 1  双波段、双模式Ga2O3/Al0.1Ga0.9N异质结光电探测器的性能总结

    Table 1.  Summary on the performance of the dual-band, dual-mode heterojunction photodetector.

    波长254 nm波长365 nm
    偏压/VR /(mA·W–1)D*/JonesEQE /%R /(mA·W–1)D*/JonesEQE/%
    –52.091.60 $ \times $ 10111.010.221.69 $ \times $ 10100.075
    –42.021.80 $ \times $ 10110.970.161.44 $ \times $ 10100.055
    –31.171.92 $ \times $ 10110.840.131.39 $ \times $ 10100.044
    –21.493.00 $ \times $ 10110.720.102.02 $ \times $ 10100.034
    –11.161.52 $ \times $ 10110.660.079.53 $ \times $ 1090.025
    00.139.37 $ \times $ 1090.060.016.18 $ \times $ 1080.003
    18.474.48 $ \times $ 10114.070.884.68 $ \times $ 10100.300
    219.287.92 $ \times $ 10129.252.088.54 $ \times $ 10100.707
    333.811.06 $ \times $ 101216.235.321.66 $ \times $ 10111.808
    449.621.25 $ \times $ 101223.9814.243.56 $ \times $ 10114.841
    566.321.41 $ \times $ 101231.8434.757.42 $ \times $ 101111.815
    下载: 导出CSV
  • [1]

    Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar

    [2]

    Shi L, Nihtianov S 2012 IEEE Sensors J. 12 2453Google Scholar

    [3]

    Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [4]

    Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [5]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [6]

    Higashiwaki M 2021 Phys. Status Solidi RRL 15 2100357Google Scholar

    [7]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T, Zhang W 2022 Adv. Opt. Mater. 10 2102055Google Scholar

    [10]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [11]

    Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y, Tang W 2022 IEEE Trans. Electron Devices 69 5595Google Scholar

    [12]

    Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y, Tang W 2022 Chin. Phys. B 31 088503Google Scholar

    [13]

    Kroemer H 1963 Proc. IEEE 51 1782Google Scholar

    [14]

    Robertson J 2000 J. Vac. Sci. Technol., B 18 1785Google Scholar

    [15]

    Liu Z, Liu Y, Wang X, Li W, Zhi Y, Wang X, Li P, Tang W 2019 J. Appl. Phys. 126 045707Google Scholar

    [16]

    Chen Y, Yang X, Zhang C, He G, Chen X, Qiao Q, Zang J, Dou W, Sun P, Deng Y, Dong L, Shan C 2022 Nano Lett. 22 4888Google Scholar

    [17]

    Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P, Tang W 2021 J. Phys. D: Appl. Phys. 54 195104Google Scholar

    [18]

    Qi X, Yue J, Ji X, Liu Z, Li S, Yan Z, Zhang M, Yang L, Li P, Guo D, Guo Y, Tang W 2022 Thin Solid Films 757 139397Google Scholar

    [19]

    Zheng Z, Wang W, Wu F, Wang Z, Shan M, Zhao Y, Liu W, Jian P, Dai J, Lu H, Chen C 2022 Opt. Express 30 21822Google Scholar

    [20]

    Gao A, Jiang W, Ma G, Liu Z, Li S, Yan Z, Sun W, Zhang S, Tang W 2022 Curr. Appl. Phys. 33 20Google Scholar

    [21]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [22]

    Sun W, Sun B, Li S, Ma G, Gao A, Jiang W, Zhang M, Li P, Liu Z, Tang W 2022 Chin. Phys. B 31 024205Google Scholar

    [23]

    Nakagomi S, Sato T, Takahashi Y, Kokubun Y 2015 Sens. Actuators, A 232 208Google Scholar

    [24]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sensors J. 11 1491Google Scholar

    [25]

    王兰喜, 陈学康, 王瑞, 曹生珠 2009 真空与低温 15 5Google Scholar

    Wang L X, Chen X K, Wang D, Cao S Z 2009 Vac. Cryogenics 15 5Google Scholar

    [26]

    Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar

    [27]

    Tung R T 2014 Appl. Phys. Rev. 1 011304Google Scholar

    [28]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [29]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [30]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [31]

    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar

    [32]

    Garrido J A, Monroy E, Izpura I, Muñoz E 1998 Semicond. Sci. Technol. 13 563Google Scholar

    [33]

    Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O, Stutzmann M 2001 Appl. Phys. Lett. 78 2503Google Scholar

    [34]

    Ma J, Zheng M, Chen C, Zhu Z, Zheng X, Chen Z, Guo Y, Liu C, Yan Y, Fang G 2018 Adv. Funct. Mater. 28 1804128Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究. 物理学报, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 物理学报, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [4] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响. 物理学报, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [5] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [6] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究. 物理学报, 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [7] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [8] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器. 物理学报, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [9] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [10] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211312
    [11] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [12] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射. 物理学报, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [13] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [14] 霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠. 两端叠层结构的中长波量子阱红外探测器. 物理学报, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
    [15] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究. 物理学报, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [16] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用. 物理学报, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [17] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [18] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] 李国辉, 周世平, 徐得名. GaAs/AlGaAs异质结动力学行为研究. 物理学报, 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
计量
  • 文章访问数:  4424
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 修回日期:  2022-09-26
  • 上网日期:  2022-10-19
  • 刊出日期:  2023-01-20

/

返回文章
返回