-
为提升光镊在三维空间中对粒子的捕获性能, 本文设计和分析了新型的双阱和多阱超透镜光镊方案. 首先基于低损耗相变材料Sb2S3设计了可控超透镜双阱光镊, 并对两个半径为250 mm的SiO2粒子所受光力进行了矢量横向分析和轴向分析. 仿真实验结果表明, 当Sb2S3在晶态下时, 超透镜捕获的两个粒子的横向光阱刚度
$ {k}_{x}\rm{分}\rm{别} $ 达到了约25.7 pN/(μm·W)和37.4 pN/(μm·W), 轴向光阱刚度$ {k}_{z} $ 均约为10.0 pN/(μm·W); 而当Sb2S3在非晶态下时,$ {k}_{x} $ 和$ {k}_{z} $ 值均降低到其对应晶态下的1/10, 且此时粒子在z方向上不能被稳定捕获, 从而实现了在三维空间中对粒子的可控捕获. 进一步本文给出了阵列式的可控多阱光镊. 通过调控相变材料Sb2S3的晶态和非晶态, 能形成不同组合粒子的三维捕获方案. 这些新型可控光镊可实现多种方式的三维空间粒子捕获, 提高了光镊的灵活性, 为超透镜在光镊领域中的应用提供了一种新思路.Novel dual-trap and multi-trap optical tweezers are designed and analyzed, in order to enhance the particle trapping performance of optical tweezers in three-dimensional (3D) space. Firstly, controllable dual-trap optical tweezers are proposed based on metalens and the low-loss optical phase-change material Sb2S3. The horizontal and axial analysis of the optical force acting on two 250-nm-radius SiO2 particles are also carried out. The simulation results show that when Sb2S3 is in the crystalline state, the transverse optical trap stiffness$ {k}_{x} $ of two particles reaches about 25.7 pN/(μm·W) and 37.4 pN/(μm·W), respectively, and the axial optical trap stiffness$ {k}_{z} $ for each particle is about 10.0 pN/(μm·W). When the Sb2S3 is in the amorphous state, both$ {k}_{x} $ and$ {k}_{z} $ are about 1/10 of the counterpart of its crystalline state. As a result, the particle is not stably trapped in the z-direction, and thus enabling the controllability of trapping particles in 3D space. Furthermore, array-type multi-trap optical tweezers are proposed. By regulating the crystal state and noncrystal state of phase-change material Sb2S3, it is convenient to form different combinations of 3D trap schemes. These new optical tweezers can realize 3D space particle trap in various ways, thereby improving the flexibility of optical tweezers, and providing a series of new ways of implementing the metalens-based optical tweezers.-
Keywords:
- metalens /
- optical tweezers /
- optical phase-change /
- three dimensions space
[1] Guo H L, Li Z Y 2013 Sci. China:Phys. Mech. Astron. 56 2351Google Scholar
[2] Block S M, Goldstein L S B, Schnapp B J 1990 Nature 348 348Google Scholar
[3] Ozcelik A, Rufo J, Guo F, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar
[4] Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11105Google Scholar
[5] Ohlinger A, Deak A, Lutich A A, Feldmann J 2012 Phys. Rev. Lett. 108 018101Google Scholar
[6] Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673Google Scholar
[7] Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar
[8] Zhang Y, Min C, Dou X, Wang X, Urbach H P, Somekh M G, Yuan X 2021 Light:Sci. Appl. 10 1Google Scholar
[9] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar
[10] Ertaş D 1998 Phys. Rev. Lett. 80 1548Google Scholar
[11] Duke T A J, Austin R H 1998 Phys. Rev. Lett. 80 1552Google Scholar
[12] MacDonald M P, Paterson L, Volke-Sepulveda K, J Arlt, W Sibbett, K Dholakia 2002 Science 296 1101Google Scholar
[13] Terray A, Oakey J, Marr D W M 2002 Science 296 1841Google Scholar
[14] Emiliani V, Sanvitto D, Zahid M, Gerbal F, Coppey-Moisan M 2004 Opt. Express 12 3906Google Scholar
[15] Shaw L A, Panas R M, Spadaccini C M, Hopkins J B 2017 Opt. Lett. 42 2862Google Scholar
[16] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar
[17] MacDonald M P, Spalding G C, Dholakia K 2003 Nature 426 421Google Scholar
[18] Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803Google Scholar
[19] Zhang Y, Liu Z, Yang J, Yuan L 2012 Opt. Commun. 285 4068Google Scholar
[20] Tam J M, Biran I, Walt D R 2004 Phys. Rev. Lett. 84 4289
[21] Yin S, He F, Kubo W, Wang Q, Frame J, G. Green N, Fang X 2020 Opt. Express 28 38949Google Scholar
[22] Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, Chattham N 2019 Crystals 9 515Google Scholar
[23] Markovich H, Shishkin I I, Hendler N, Ginzburg P 2018 Nano Lett. 18 5024Google Scholar
[24] Wang X, Dai Y, Zhang Y, Min C, and Yuan X 2018 ACS Photonics 5 2945Google Scholar
[25] Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, Tsai D P 2021 Nanomaterials 11 1730Google Scholar
[26] Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N, Zentgraf T 2020 Photonics Res. 8 1435Google Scholar
[27] Ma Y, Rui G, Gu B, Cui Y 2017 Sci. Rep. 7 1Google Scholar
[28] Li T, Xu X, Fu B, Wang S, Li B, Wang Z, Zhu S 2021 Photonics Res. 9 1062Google Scholar
[29] Ikuma Y, Shoji Y, Kuwahara M, Wang X, Kintaka K, Kawashima H, Tanaka D, Tsuda, H 2010 Electron. Lett. 46 1460Google Scholar
[30] Zhang Y, Chou J B, Li J, Li H, Du Q, Yadav A, Zhou S, Shalaginov M Y, Fang Z, Zhong H, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J 2019 Nat. Commun. 10 4279Google Scholar
[31] Delaney M, Zeimpekis I, Du H, Yan X, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7 eabg3500Google Scholar
[32] Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar
[33] Chaumet P C, Nieto-vesperinas M 2000 Opt. Lett. 25 1065Google Scholar
[34] Haraday Y, Asakura T 1996 Opt. Commun. 124 529Google Scholar
[35] Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophotonics 2 021875Google Scholar
[36] Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar
[37] Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Escarra, M D 2021 CLEO: QELS_Fundamental Science (Optica Publishing Group), May, 2021 pJTu3A.8
[38] Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Nguyen V, Sanghrea J, Escarra M D 2022 CLEO: Applications and Technology (Optica Publishing Group), May, 2022 pJTu3A-69
[39] Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J, Xu B 2019 Appl. Sci. 9 4927Google Scholar
[40] Song Y, Liu W, Wang X, Wang F, Wei Z, Meng H, Lin N, Zhang H 2021 Front. Phys. 9 651898Google Scholar
-
图 1 用于双阱光镊的超透镜结构图 (a) A和B部分的Sb2S3均处于晶态; (b) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (c) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (d) A和B部分的Sb2S3均处于非晶态
Fig. 1. Structure of dual-trap optical tweezer metalens: (a) Sb2S3 in both parts A and B are in crystalline state; (b) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (c) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (d) Sb2S3 in both parts A and B are in amorphous state.
图 2 (a)单元结构的结构图, 从上至下分别是高度H为1 μm和不同宽度长度比W/L的Sb2S3, 厚度T为0.03 μm的ITO层和SiO2基底, 单元结构周期P为0.5 μm; (b), (c) Sb2S3处于非晶态和晶态下, 纳米方柱不同宽度长度比W/L的PCE图; (d) Sb2S3纳米方柱L = 220 nm, W = 160 nm时, 相位和PCE与旋转角
$ \theta $ 的关系图Fig. 2. (a) Structural diagrams of the unit cell, from top to bottom, Sb2S3 with H of 1 μm and different W/L, ITO layer with T of 0.03 μm, and SiO2 base, and unit cell P of 0.5 μm, respectively; (b), (c) PCE diagrams of the nanosquare pillars with different W/ L when Sb2S3 is in the amorphous and crystalline states, respectively; (d) the plots of phase and PCE versus rotation angle
$ \theta $ for Sb2S3 nanosquare pillars with L = 220 nm and W = 160 nm.图 3 xz平面和xy (z = 3.3 μm) 平面的电磁场强度分布图 (a), (b) A和B部分的Sb2S3均处于晶态; (c), (d) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (e), (f) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (g), (h) A和B部分的Sb2S3均处于非晶态
Fig. 3. The electromagnetic field intensity distribution in the xz plane and xy (z = 3.3 μm) plane, respectively: (a), (b) Sb2S3 in both parts A and B are in crystalline state; (c), (d) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (e), (f) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (g) , (h) Sb2S3 in both parts A and B are in amorphous state.
图 4 施加在粒子上Fx和Fz分别与x位移和z位移的关系图 (a) A和B部分的Sb2S3均处于晶态; (b) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (c) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (d) A和B部分的Sb2S3均处于非晶态
Fig. 4. Plots of Fx and Fz for the particle versus x displacement and z displacement, respectively: (a) Sb2S3 in both parts A and B are in crystalline state; (b) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (c) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (d) Sb2S3 in both parts A and B are in amorphous state.
图 7 (a), (b) 用于多阱光镊的超透镜结构图, (a) 中间部分的Sb2S3处于非晶态, 其余部分的Sb2S3均处于晶态, (b)所有部分的Sb2S3均处于晶态; (c), (d) 分别为(a)状态下xy (z = 3.3 μm)平面和xz平面的电磁场强度分布图; (e), (f) 分别为(b)状态下xy (z = 3.3 μm)平面和xz平面的电磁场强度分布图
Fig. 7. (a), (b) Structure of the multi-trap optical tweezer metalens, (a) Sb2S3 in the middle part is in the amorphous state, and Sb2S3 in the rest parts are in the crystalline state, (b) Sb2S3 in all parts are in the crystalline state; (c), (d) the electromagnetic field intensity distributions in the xy (z = 3.3 μm) plane and xz plane in (a) state, respectively; (e), (f) the electromagnetic field intensity distributions of xy (z = 3.3 μm) plane and xz plane in (b) state, respectively.
图 8 超透镜中间部分的Sb2S3在晶态和非晶态下 (a) 粒子受到的Fx与x位移的关系; (b) 粒子受到的Fz与z位移的关系; (c), (d) 超透镜中间部分的Sb2S3在晶态下状态下Fx和Fz的势阱深度图
Fig. 8. Sb2S3 in the middle part of the multi-trap optical tweezer metalens under the crystalline and amorphous states: (a) Fx of particles versus x displacement; (b) Fz of particles versus z displacement; (c), (d) potential depth plots of Fx and Fz for Sb2S3 in the middle part of the multi-trap optical tweezer metalens in the crystalline state.
图 9 超透镜其中6种聚焦状态的xy (z = 3.3 μm)平面和xz平面电磁场强度分布图来实现不同形状的捕获阵列 (a)—(c)和(g)—(i)为xy (z = 3.3 μm)平面强度分布图; (d)—(f)和(j)—(l)为对应的xz平面强度分布图
Fig. 9. Electromagnetic field intensity distribution of xy (z = 3.3 μm) plane and xz plane for six focusing states of the multi-trap optical tweezer metalens to achieve different shapes of trapping arrays: (a)–(c) and (g)–(i) are xy (z = 3.3 μm) planar intensity distributions; (d)–(f) and (j)–(l) are the corresponding xz planar intensity distributions.
-
[1] Guo H L, Li Z Y 2013 Sci. China:Phys. Mech. Astron. 56 2351Google Scholar
[2] Block S M, Goldstein L S B, Schnapp B J 1990 Nature 348 348Google Scholar
[3] Ozcelik A, Rufo J, Guo F, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar
[4] Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11105Google Scholar
[5] Ohlinger A, Deak A, Lutich A A, Feldmann J 2012 Phys. Rev. Lett. 108 018101Google Scholar
[6] Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673Google Scholar
[7] Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar
[8] Zhang Y, Min C, Dou X, Wang X, Urbach H P, Somekh M G, Yuan X 2021 Light:Sci. Appl. 10 1Google Scholar
[9] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar
[10] Ertaş D 1998 Phys. Rev. Lett. 80 1548Google Scholar
[11] Duke T A J, Austin R H 1998 Phys. Rev. Lett. 80 1552Google Scholar
[12] MacDonald M P, Paterson L, Volke-Sepulveda K, J Arlt, W Sibbett, K Dholakia 2002 Science 296 1101Google Scholar
[13] Terray A, Oakey J, Marr D W M 2002 Science 296 1841Google Scholar
[14] Emiliani V, Sanvitto D, Zahid M, Gerbal F, Coppey-Moisan M 2004 Opt. Express 12 3906Google Scholar
[15] Shaw L A, Panas R M, Spadaccini C M, Hopkins J B 2017 Opt. Lett. 42 2862Google Scholar
[16] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar
[17] MacDonald M P, Spalding G C, Dholakia K 2003 Nature 426 421Google Scholar
[18] Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803Google Scholar
[19] Zhang Y, Liu Z, Yang J, Yuan L 2012 Opt. Commun. 285 4068Google Scholar
[20] Tam J M, Biran I, Walt D R 2004 Phys. Rev. Lett. 84 4289
[21] Yin S, He F, Kubo W, Wang Q, Frame J, G. Green N, Fang X 2020 Opt. Express 28 38949Google Scholar
[22] Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, Chattham N 2019 Crystals 9 515Google Scholar
[23] Markovich H, Shishkin I I, Hendler N, Ginzburg P 2018 Nano Lett. 18 5024Google Scholar
[24] Wang X, Dai Y, Zhang Y, Min C, and Yuan X 2018 ACS Photonics 5 2945Google Scholar
[25] Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, Tsai D P 2021 Nanomaterials 11 1730Google Scholar
[26] Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N, Zentgraf T 2020 Photonics Res. 8 1435Google Scholar
[27] Ma Y, Rui G, Gu B, Cui Y 2017 Sci. Rep. 7 1Google Scholar
[28] Li T, Xu X, Fu B, Wang S, Li B, Wang Z, Zhu S 2021 Photonics Res. 9 1062Google Scholar
[29] Ikuma Y, Shoji Y, Kuwahara M, Wang X, Kintaka K, Kawashima H, Tanaka D, Tsuda, H 2010 Electron. Lett. 46 1460Google Scholar
[30] Zhang Y, Chou J B, Li J, Li H, Du Q, Yadav A, Zhou S, Shalaginov M Y, Fang Z, Zhong H, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J 2019 Nat. Commun. 10 4279Google Scholar
[31] Delaney M, Zeimpekis I, Du H, Yan X, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7 eabg3500Google Scholar
[32] Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar
[33] Chaumet P C, Nieto-vesperinas M 2000 Opt. Lett. 25 1065Google Scholar
[34] Haraday Y, Asakura T 1996 Opt. Commun. 124 529Google Scholar
[35] Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophotonics 2 021875Google Scholar
[36] Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar
[37] Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Escarra, M D 2021 CLEO: QELS_Fundamental Science (Optica Publishing Group), May, 2021 pJTu3A.8
[38] Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Nguyen V, Sanghrea J, Escarra M D 2022 CLEO: Applications and Technology (Optica Publishing Group), May, 2022 pJTu3A-69
[39] Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J, Xu B 2019 Appl. Sci. 9 4927Google Scholar
[40] Song Y, Liu W, Wang X, Wang F, Wei Z, Meng H, Lin N, Zhang H 2021 Front. Phys. 9 651898Google Scholar
计量
- 文章访问数: 4080
- PDF下载量: 92
- 被引次数: 0