-
H2S作为一种有毒且腐蚀性较强的气体污染物, 实现其浓度的准确测量意义重大. 实际工业过程中, H2S测量常受其他排放产物的干扰, 本文基于腔衰荡吸收光谱技术(CRDS)通过扫描6336—6339 cm–1范围内的吸收光谱, 实现了H2S/CO2/CO三组分物质浓度的同步测量, 为实际工业过程中物质干扰下的H2S浓度测量提供新思路. 首先, 对不同采样长度下提取衰荡时间的准确性进行分析, 发现衰荡信号的采样长度约为衰荡时间的8倍时, 衰荡时间提取效果最好; 通过不同压力对比实验确定最佳实验压力工况为50 kPa, 并将最佳采样长度与压力工况应用于H2S浓度测量. 随后, 改变H2S浓度对CO2/CO干扰下系统对痕量H2S浓度的测量效果进行检验, 并对不同稀释比例下浓度测量结果的线性度进行分析. 最后, 对本文CRDS系统的检测限进行分析, 通过对4组低浓度H2S光谱的信噪比进行分析, 得到H2S的检出限为6.9 ppb (1 ppb = 10–9); 通过对系统长期测量结果进行Allan方差分析, 得到系统对H2S物质浓度的检测下限约在2 ppb左右.Since H2S is a corrosive and toxic gas pollutant, the accurate measurement of its concentration is significant. However, in the practical industrial processes, it is difficult to implement because of the disturbance caused by other emissions such as CO2 and CO. Therefore, in this work, the concentration of H2S, CO2 and CO are measured simultaneously based on cavity ring-down spectroscopy (CRDS) as a viable alternative to measure the concentration of H2S accurately when CO2 and CO exist. First, the wavelength of mixed gas within a range of 6336–6339 cm–1 is selected as the target region where the spectral line intensity of H2S is stronger than 10 times that of CO2 or CO and the water absorption is extremely weak. Second, the influence of the sampling length (Tm) on the accuracy of the ring-down time is analyzed by evaluating average (accuracy), standard deviation (precision) and consumption time (speed). Third, the experiments are carried out at different pressures in order to obtain the optimal pressure condition. Fourth, the concentration of trace H2S is measured when the disturbances caused by CO2 or CO are added, and the error of the measured concentration is analyzed. Finally, the detection limit of CRDS-based system is calculated to be 6.9 ppb by analyzing the SNR of four groups of low concentration H2S spectra, while the lower limit of detection of CRDS-based system is calculated to be 2 ppb by analyzing the Allan variance of long-term data. The measured concentration and its desired value show a good linearity at different dilution ratios. Both the high linearity and the low detection limit of H2S indicate the effectiveness of the CRDS-based measurement system to measure H2S when CO2 and CO exist. The successful application of the CRDS-based system to the measurement of H2S shows its promising prospect in gas concentration measurement for practical industrial processes.
[1] Glass D C, 1990 Ann. Occup. Hyg. 34 323
[2] Jappinen P, Vilkka V, Marttila O, Haahtela T 1990 Br. J. Ind. Med. 47 824
[3] Duong T X, Suruda A J, Maier L A 2001 Am. J. Ind. Med. 40 221Google Scholar
[4] Steinsmo. U, Rogne. T, Drugli. J 1997 Corrosion 53 955Google Scholar
[5] 杨建设, 尹爱国, 杨孝军, 钟丽霞 2005 水土保持研究 12 85Google Scholar
Yang J S, Yin A G, Yang X J, Zhong L X 2005 Res. Soil. Water. Conserv. 12 85Google Scholar
[6] Wang Y, Wang B, He S, Zhang L, Xing X, Li H, Lu M 2022 J. Nat. Gas Sci. Eng. 100 104477Google Scholar
[7] 许伟刚, 谭厚章, 刘原一, 魏博, 惠世恩 2018 中国电力 51 113
Xv W G, Tan H Z, Liu Y Y, Wei B, Hui S H 2018 Electric Power 51 113
[8] 王毅斌, 张思聪, 谭厚章, 林国辉, 王萌, 卢旭超, 杨浩 2021 中国电力 54 118
Wang Y B, Zhang S C, Tan H Z, Lin G H, Wang M, Lu X C, Yang H 2021 Electric Power 54 118
[9] Pandey S K, Kim K 2009 Environ. Sci. Technol. 43 3020Google Scholar
[10] Kim K 2011 Atmos. Environ. 45 3366Google Scholar
[11] Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar
[12] Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar
[13] Mathieu O, Mulvihill C, Petersen E L 2017 P. Combust. Inst. 36 4019Google Scholar
[14] 张杨, 范颖, 王哲, 陈文亮 2017 电子测量与仪器学报 31 1943
Zhang Y, Fan Y, Wang Z, Chen W L 2017 J. Electron. Measurem. Instrum. 31 1943
[15] 何岸, 陈雅茜, 郭敬远, 胡雪蛟, 江海峰 2022 矿业安全与环保 49 113
He A, Chen Y X, Guo J, Hu X J, Jiang H F 2022 Mining Safety Envir. Prot. 49 113
[16] Guo Y, Qiu X, Li N, Feng S, Cheng T, Liu Q, He Q, Kan R, Yang H, Li C 2020 Infrared Phys. Techn. 105 103153Google Scholar
[17] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏 2022 物理学报 71 184205Google Scholar
Wang Z, Du Y J, Ding Y J, Lu J F, Peng Z M 2022 Acta Phys. Sin. 71 184205Google Scholar
[18] 彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145
Peng Z, He S L, Zhou P L, Wang Z, Du Y J, Ding Y J, Wu Y X, Lv J F 2022 Thermal Powergen. 51 145
[19] Keefe O A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar
[20] Berden G, Engeln R 2009 Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiltshire: Wiley-Blackwell) pp7–10
[21] Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar
[22] Ball S M, Jones R L 2003 Chem. Rev. 103 5239Google Scholar
[23] 王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar
Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar
[24] Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[25] Pandaa B, Maithania S, Pradhana M 2020 Chem. Phys. 535 110769
[26] Matheson I B C 1987 Instrum. Sci. Technol. 16 345Google Scholar
[27] Halmer D, von Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar
[28] Galatry L 1961 Phys. Rev. 122 1218Google Scholar
[29] Dicke R H 1953 Phy. Rev. 89 472Google Scholar
[30] Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Ra. 105 525Google Scholar
[31] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar
[32] Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Y, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar
[33] Allan D W 1966 P. IEEE 54 221Google Scholar
-
图 2 腔衰荡光谱测量系统(PC: 计算机, LC: 激光器控制器, DFB: 激光器, ISO: 光纤隔离器, AOM: 声光调制器, RDC: 衰荡腔, PZT: 压电陶瓷, APD: 雪崩式光电探测器, PG: 脉冲信号发生器, RF: 射频发生器, DAQ: 数据采集系统, RD: 衰荡信号, Trig: 触发信号)
Fig. 2. Cavity ring-down spectroscopy measurement system (PC: personal computer, LC: laser controller, DFB: DFB laser, ISO: fiber isolator, AOM: acousto-optic modulator, RDC: ring-down cavity, PZT: piezoceramics, APD: avalanche photodiode, PG: pulse generator, RF: radio frequency generator, DAQ: digital acquisition, RD: ring-down signal, Trig: trigger)
-
[1] Glass D C, 1990 Ann. Occup. Hyg. 34 323
[2] Jappinen P, Vilkka V, Marttila O, Haahtela T 1990 Br. J. Ind. Med. 47 824
[3] Duong T X, Suruda A J, Maier L A 2001 Am. J. Ind. Med. 40 221Google Scholar
[4] Steinsmo. U, Rogne. T, Drugli. J 1997 Corrosion 53 955Google Scholar
[5] 杨建设, 尹爱国, 杨孝军, 钟丽霞 2005 水土保持研究 12 85Google Scholar
Yang J S, Yin A G, Yang X J, Zhong L X 2005 Res. Soil. Water. Conserv. 12 85Google Scholar
[6] Wang Y, Wang B, He S, Zhang L, Xing X, Li H, Lu M 2022 J. Nat. Gas Sci. Eng. 100 104477Google Scholar
[7] 许伟刚, 谭厚章, 刘原一, 魏博, 惠世恩 2018 中国电力 51 113
Xv W G, Tan H Z, Liu Y Y, Wei B, Hui S H 2018 Electric Power 51 113
[8] 王毅斌, 张思聪, 谭厚章, 林国辉, 王萌, 卢旭超, 杨浩 2021 中国电力 54 118
Wang Y B, Zhang S C, Tan H Z, Lin G H, Wang M, Lu X C, Yang H 2021 Electric Power 54 118
[9] Pandey S K, Kim K 2009 Environ. Sci. Technol. 43 3020Google Scholar
[10] Kim K 2011 Atmos. Environ. 45 3366Google Scholar
[11] Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar
[12] Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar
[13] Mathieu O, Mulvihill C, Petersen E L 2017 P. Combust. Inst. 36 4019Google Scholar
[14] 张杨, 范颖, 王哲, 陈文亮 2017 电子测量与仪器学报 31 1943
Zhang Y, Fan Y, Wang Z, Chen W L 2017 J. Electron. Measurem. Instrum. 31 1943
[15] 何岸, 陈雅茜, 郭敬远, 胡雪蛟, 江海峰 2022 矿业安全与环保 49 113
He A, Chen Y X, Guo J, Hu X J, Jiang H F 2022 Mining Safety Envir. Prot. 49 113
[16] Guo Y, Qiu X, Li N, Feng S, Cheng T, Liu Q, He Q, Kan R, Yang H, Li C 2020 Infrared Phys. Techn. 105 103153Google Scholar
[17] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏 2022 物理学报 71 184205Google Scholar
Wang Z, Du Y J, Ding Y J, Lu J F, Peng Z M 2022 Acta Phys. Sin. 71 184205Google Scholar
[18] 彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145
Peng Z, He S L, Zhou P L, Wang Z, Du Y J, Ding Y J, Wu Y X, Lv J F 2022 Thermal Powergen. 51 145
[19] Keefe O A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar
[20] Berden G, Engeln R 2009 Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiltshire: Wiley-Blackwell) pp7–10
[21] Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar
[22] Ball S M, Jones R L 2003 Chem. Rev. 103 5239Google Scholar
[23] 王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar
Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar
[24] Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[25] Pandaa B, Maithania S, Pradhana M 2020 Chem. Phys. 535 110769
[26] Matheson I B C 1987 Instrum. Sci. Technol. 16 345Google Scholar
[27] Halmer D, von Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar
[28] Galatry L 1961 Phys. Rev. 122 1218Google Scholar
[29] Dicke R H 1953 Phy. Rev. 89 472Google Scholar
[30] Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Ra. 105 525Google Scholar
[31] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar
[32] Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Y, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar
[33] Allan D W 1966 P. IEEE 54 221Google Scholar
计量
- 文章访问数: 4147
- PDF下载量: 101
- 被引次数: 0