搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaAs晶体在不同应变下生长过程的分子动力学模拟

袁用开 陈茜 高廷红 梁永超 谢泉 田泽安 郑权 陆飞

引用本文:
Citation:

GaAs晶体在不同应变下生长过程的分子动力学模拟

袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞

Molecular dynamics simulations of GaAs crystal growth under different strains

Yuan Yong-Kai, Chen Qian, Gao Ting-Hong, Liang Yong-Chao, Xie Quan, Tian Ze-An, Zheng Quan, Lu Fei
PDF
HTML
导出引用
  • GaAs晶体的高质量生长对于制造高性能高频微波电子器件和发光器件具有重要意义. 本文通过分子动力学方法对GaAs晶体沿[110]晶向的诱导结晶进行模拟, 并采用最大标准团簇分析、双体分布函数和可视化等方法研究应变对生长过程和缺陷形成的影响. 结果表明, 不同应变条件下GaAs晶体的结晶过程发生显著变化. 在初始阶段, 施加一定拉应变和较大的压应变后, 体系的晶体生长速率发生降低, 且应变越大, 结晶速率越低. 此外, 随着晶体的生长, 体系形成以{111}小平面为边界的锯齿形界面, 生长平面与{111}小平面之间的夹角影响固液界面的形态, 进而影响孪晶的形成. 施加拉应变越大, 此夹角越小, 形成孪晶缺陷越多, 结构越不规则. 同时, 体系中极大部分的位错与孪晶存在伴生关系, 应变的施加可以抑制或促进位错的形核, 合适的应变甚至可以使晶体无位错生长. 本文从原子尺度上研究GaAs的微观结构演化, 可为晶体生长理论提供理论指导.
    The high-quality growth of GaAs crystals is extremely essential for the fabrication of high-performance high-frequency microwave electronic devices and light-emitting devices. In this work, the molecular dynamics (MD) simulation is used to simulate the induced crystallization of GaAs crystal along the [110] orientation. The effects of strain on the growth process and defect formation are analyzed by the largest standard cluster analysis, the pair distribution function, and visualization analysis. The results indicate that the crystallization process of GaAs crystal changes significantly under different strain conditions. At the initial stage, the crystal growth rate of the system decreases after a certain tensile strain and a large compressive strain have been applied, and the greater the strain, the lower the crystallization rate is. In addition, as the crystal grows, the system forms a zigzag interface bounded by the {111} facet, and the angle between the growth plane and the {111} facet affects the morphology of the solid-liquid interface and further affects the formation of twins. The larger the applied tensile strain and the smaller the angle, the more twin defects will form and the more irregular they will be. At the same time, a large proportion of the dislocations in the system is associated with twins. The application of strain can either inhibit or promote the nucleation of dislocations, and under an appropriate amount of strain size, crystals without dislocations can even grow. The study of the microstructural evolution of GaAs on an atomic scale provides a reference for crystal growth theory.
      通信作者: 陈茜, chenzhangqianer@163.com
    • 基金项目: 贵州省基础研究计划(自然科学类)(批准号: ZK[2022]042, ZK[2021]051, [2017]5788)、国家自然科学基金(批准号: 51761004, 51661005, 11964005)、贵州大学智能制造产教融合创新平台及研究生联合培养基地(批准号: 2020-520000-83-01-324061)和贵州大学培育项目(批准号: [2020]33)资助的课题
      Corresponding author: Chen Qian, chenzhangqianer@163.com
    • Funds: Project supported by the Basic Research Program (Natural Science) of Guizhou Province, China (Grant Nos. ZK[2022]042, ZK[2021]051, [2017]5788), the National Natural Science Foundation of China (Grant Nos. 51761004, 51661005, 11964005), the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University, China (Grant No. 2020-520000-83-01-324061), and the Fostering Project of Guizhou University, China (Grant No. [2020]33).
    [1]

    Santos Gomes B, Masia F 2022 Journal of Colloid and Interface Science 625 743Google Scholar

    [2]

    王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 物理学报 68 087803Google Scholar

    Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D K, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar

    [3]

    Carter M A, Mottram A, Peaker A R, Sudlow P D, White T 1971 Nature 232 469Google Scholar

    [4]

    Chuang L C, Sedgwick F G, Chen R, Ko W S, Moewe M, Ng K W, Tran T T D, Chang-Hasnain C 2011 Nano Lett. 11 385Google Scholar

    [5]

    Currie M, Dianat P, Persano A, Martucci M C, Quaranta F, Cola A, Nabet B 2013 Sensors 13 2475Google Scholar

    [6]

    Ukita H, Uenishi Y, Tanaka H 1993 Science 260 786Google Scholar

    [7]

    Mangla O, Roy S 2020 Materials Letters 274 128036Google Scholar

    [8]

    Papež N, Dallaev R, Ţălu Ş, Kaštyl J 2021 Materials 14 3075Google Scholar

    [9]

    Ghalgaoui A, Reimann K, Woerner M, Elsaesser T, Flytzanis C, Biermann K 2018 Phys. Rev. Lett. 121 266602Google Scholar

    [10]

    Whelan J M, Wheatley G H 1958 J. Phys. Chem. Solids 6 169Google Scholar

    [11]

    Wu T, Wei J, Liu H, Ma S, Chen Y, Ren J 2021 Electronics 10 1482Google Scholar

    [12]

    Murakami M 2002 Sci. Technol. Adv. Mater. 3 1Google Scholar

    [13]

    Jiang P, Balram K C 2020 Opt. Express 28 12262Google Scholar

    [14]

    Zhan L, Xia F, Xia Y, Xie B 2018 ACS Sustainable Chem. Eng. 6 1336Google Scholar

    [15]

    Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar

    [16]

    Shibuta Y, Sakane S, Miyoshi E, Okita S, Takaki T, Ohno M 2017 Nat. Communica. 8 10Google Scholar

    [17]

    Jia T, Wang Z, Tang M, Xue Y, Huang G, Nie X, Lai S, Ma W, He B, Gou S 2022 Nanomaterials 12 611Google Scholar

    [18]

    Thu H T T, Hoang V V 2010 Computa. Mater. Sci. 49 S221Google Scholar

    [19]

    Luo J, Gao T, Ren L, Xie Q, Tian Z, Chen Q, Liang Y 2019 Mater. Sci. Semicon. Proc. 104 104680Google Scholar

    [20]

    Gulluoglu A N, Zhu X, Tsai C T 2001 J. Mater. Sci. 36 3557Google Scholar

    [21]

    Meduoye G O, Bacon D J, Evans K E 1988 J. Crystal Growth 88 397Google Scholar

    [22]

    Subramanyam N, Tsai C T 1995 J. Mater. Proc. Technol. 55 278Google Scholar

    [23]

    Zhu X A, Tsai C T 2004 Computa. Mater. Sci. 29 334Google Scholar

    [24]

    Gulluoglu A N, Tsai C T, Hartley C S, Chait A 1994 Model. Simul. Mater. Sci. Eng. 2 67Google Scholar

    [25]

    Pavia F, Curtin W A 2015 Model. Simul. Mater. Sci. Eng. 23 055002Google Scholar

    [26]

    Plimpton S 1995 J. Computa. Phys. 117 1Google Scholar

    [27]

    Albe K, Nordlund K, Nord J, Kuronen A 2002 Phys. Rev. B 66 035205Google Scholar

    [28]

    Fichthorn K A, Tiwary Y, Hammerschmidt T, Kratzer P, Scheffler M 2011 Phys. Rev. B 83 195328Google Scholar

    [29]

    陈庆, 陈茜, 梁永超, 高廷红, 田泽安, 谢泉 2017 科学通报 62 1386Google Scholar

    Chen Q, Chen Q, Liang Y C, Gao T H, Tian Z A, Xie Q 2017 Chin. Sci. Bulletin 62 1386Google Scholar

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [31]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 EPL 96 36001Google Scholar

    [32]

    Terban M W, Billinge S J L 2022 Chem. Rev. 122 1208Google Scholar

    [33]

    Tian Z A, Dong K J, Yu A B 2013 AIP Confer. Proc. 1542 373Google Scholar

    [34]

    韦国翠, 田泽安 2021 物理学报 70 246401Google Scholar

    Wei G C, Tian Z A 2021 Acta Phys. Sin. 70 246401Google Scholar

    [35]

    Hu L, Tian Z, Liang Y, Gao T, Chen Q, Zheng Q, Luo Y, Xie Q 2022 J. Alloys Compounds 897 162743Google Scholar

    [36]

    Richert R, Angell C A 1998 J. Chem. Phys. 108 9016Google Scholar

    [37]

    Capaccioli S, Prevosto D, Lucchesi M, Amirkhani M, Rolla P 2009 J. Non-Crystalline Solids 355 753Google Scholar

    [38]

    Scott G D, Mader D L 1964 Nature 201 382Google Scholar

    [39]

    Finney J L, Bernal J D 1997 Proc. Royal Society of London. A. Mathemat. Phys. Sci. 319 479Google Scholar

    [40]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [41]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007Google Scholar

    [42]

    Liu C S, Xia J, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506Google Scholar

    [43]

    Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [44]

    Li D H, Moore R A, Wang S 1988 J. Chem. Phys. 89 4309Google Scholar

    [45]

    Mitchell T E, Unal O 1991 J. Electro. Mater. 20 723Google Scholar

  • 图 1  MD模拟中GaAs晶体的固液模型. 蓝色原子代表晶体原子, 灰色原子代表熔体原子

    Fig. 1.  Solid-liquid model of GaAs crystal in the MD simulation. The blue atoms represent the crystal atoms and the grey atoms represent the melting atoms.

    图 2  (a) [4-S000] LaSC示意图; (b) 7种应变下体系的LaSC构型熵变化

    Fig. 2.  (a) Diagram of [4-S000] LaSC; (b) LaSC entropy changes for the systems at seven strains.

    图 3  不同应变下熔体区域的PDF曲线

    Fig. 3.  PDF curves of the melt region at different strains.

    图 4  施加不同应变时结晶速率随时间的变化, 插图显示0—0.7 ns时间内的放大部分

    Fig. 4.  Variation of crystallization rates with time under different strains, and the inset shows the enlarged portion for the time range of 0 to 0.7 ns.

    图 5  孪晶缺陷原子数(a)和位错密度(b)随时间的变化曲线

    Fig. 5.  Variation of the number of twin defect atoms (a) and dislocation density with time (b).

    图 6  不同应变下GaAs诱导式结晶体系的微观结构演变过程 (蓝色原子代表闪锌矿结构原子; 黄色原子代表纤锌矿结构原子; 白色原子代表其他类型的无序原子)

    Fig. 6.  Microstructural evolution of GaAs-induced crystallization systems at different strains (Blue atoms represent zinc-blende structure atoms; yellow atoms represent wurtzite structure atoms; white atoms are other types of disordered atoms).

    图 7  ε = –0.02时的ADF曲线

    Fig. 7.  ADF curves at ε = –0.02.

    图 8  (a) 对GaAs晶体的生长等温弛豫一段时间后系统的原子结构; (b) {111}面与生长平面之间的几何关系示意图

    Fig. 8.  (a) Atomic structure of the system after a period of isothermal relaxation for the growth of GaAs crystals; (b) schematic diagram of the geometric relationship between the {111} plane and the growth plane.

    图 9  压杆位错形成过程 (a) 100 ps; (b) 900 ps. 压杆位错形成图解 (c)位错反应前; (d)位错反应后

    Fig. 9.  Formation process of Lomer-Cottrell dislocation: (a) 100 ps; (b) 900 ps. Formation diagram of Lomer-Cottrell dislocation: (c) Before dislocation reaction; (d) after dislocation reaction.

    表 1  GaAs中各原子间的相互作用参数[28,29]

    Table 1.  Interaction parameters between the atoms in GaAs[28,29].

    参数Ga—GaAs—AsGa—As
    γ0.0078740.4550.0166
    S1.111.861.1417
    d0.750.16120.56
    β–11.081.4351.5228
    D0/eV1.403.962.10
    R02.32352.102.35
    c1.9180.11861.29
    h = cosθ00.30130.077480.237
    α–11.8463.1610
    Rc2.953.403.10
    D0.150.200.20
    下载: 导出CSV
  • [1]

    Santos Gomes B, Masia F 2022 Journal of Colloid and Interface Science 625 743Google Scholar

    [2]

    王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 物理学报 68 087803Google Scholar

    Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D K, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar

    [3]

    Carter M A, Mottram A, Peaker A R, Sudlow P D, White T 1971 Nature 232 469Google Scholar

    [4]

    Chuang L C, Sedgwick F G, Chen R, Ko W S, Moewe M, Ng K W, Tran T T D, Chang-Hasnain C 2011 Nano Lett. 11 385Google Scholar

    [5]

    Currie M, Dianat P, Persano A, Martucci M C, Quaranta F, Cola A, Nabet B 2013 Sensors 13 2475Google Scholar

    [6]

    Ukita H, Uenishi Y, Tanaka H 1993 Science 260 786Google Scholar

    [7]

    Mangla O, Roy S 2020 Materials Letters 274 128036Google Scholar

    [8]

    Papež N, Dallaev R, Ţălu Ş, Kaštyl J 2021 Materials 14 3075Google Scholar

    [9]

    Ghalgaoui A, Reimann K, Woerner M, Elsaesser T, Flytzanis C, Biermann K 2018 Phys. Rev. Lett. 121 266602Google Scholar

    [10]

    Whelan J M, Wheatley G H 1958 J. Phys. Chem. Solids 6 169Google Scholar

    [11]

    Wu T, Wei J, Liu H, Ma S, Chen Y, Ren J 2021 Electronics 10 1482Google Scholar

    [12]

    Murakami M 2002 Sci. Technol. Adv. Mater. 3 1Google Scholar

    [13]

    Jiang P, Balram K C 2020 Opt. Express 28 12262Google Scholar

    [14]

    Zhan L, Xia F, Xia Y, Xie B 2018 ACS Sustainable Chem. Eng. 6 1336Google Scholar

    [15]

    Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar

    [16]

    Shibuta Y, Sakane S, Miyoshi E, Okita S, Takaki T, Ohno M 2017 Nat. Communica. 8 10Google Scholar

    [17]

    Jia T, Wang Z, Tang M, Xue Y, Huang G, Nie X, Lai S, Ma W, He B, Gou S 2022 Nanomaterials 12 611Google Scholar

    [18]

    Thu H T T, Hoang V V 2010 Computa. Mater. Sci. 49 S221Google Scholar

    [19]

    Luo J, Gao T, Ren L, Xie Q, Tian Z, Chen Q, Liang Y 2019 Mater. Sci. Semicon. Proc. 104 104680Google Scholar

    [20]

    Gulluoglu A N, Zhu X, Tsai C T 2001 J. Mater. Sci. 36 3557Google Scholar

    [21]

    Meduoye G O, Bacon D J, Evans K E 1988 J. Crystal Growth 88 397Google Scholar

    [22]

    Subramanyam N, Tsai C T 1995 J. Mater. Proc. Technol. 55 278Google Scholar

    [23]

    Zhu X A, Tsai C T 2004 Computa. Mater. Sci. 29 334Google Scholar

    [24]

    Gulluoglu A N, Tsai C T, Hartley C S, Chait A 1994 Model. Simul. Mater. Sci. Eng. 2 67Google Scholar

    [25]

    Pavia F, Curtin W A 2015 Model. Simul. Mater. Sci. Eng. 23 055002Google Scholar

    [26]

    Plimpton S 1995 J. Computa. Phys. 117 1Google Scholar

    [27]

    Albe K, Nordlund K, Nord J, Kuronen A 2002 Phys. Rev. B 66 035205Google Scholar

    [28]

    Fichthorn K A, Tiwary Y, Hammerschmidt T, Kratzer P, Scheffler M 2011 Phys. Rev. B 83 195328Google Scholar

    [29]

    陈庆, 陈茜, 梁永超, 高廷红, 田泽安, 谢泉 2017 科学通报 62 1386Google Scholar

    Chen Q, Chen Q, Liang Y C, Gao T H, Tian Z A, Xie Q 2017 Chin. Sci. Bulletin 62 1386Google Scholar

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [31]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 EPL 96 36001Google Scholar

    [32]

    Terban M W, Billinge S J L 2022 Chem. Rev. 122 1208Google Scholar

    [33]

    Tian Z A, Dong K J, Yu A B 2013 AIP Confer. Proc. 1542 373Google Scholar

    [34]

    韦国翠, 田泽安 2021 物理学报 70 246401Google Scholar

    Wei G C, Tian Z A 2021 Acta Phys. Sin. 70 246401Google Scholar

    [35]

    Hu L, Tian Z, Liang Y, Gao T, Chen Q, Zheng Q, Luo Y, Xie Q 2022 J. Alloys Compounds 897 162743Google Scholar

    [36]

    Richert R, Angell C A 1998 J. Chem. Phys. 108 9016Google Scholar

    [37]

    Capaccioli S, Prevosto D, Lucchesi M, Amirkhani M, Rolla P 2009 J. Non-Crystalline Solids 355 753Google Scholar

    [38]

    Scott G D, Mader D L 1964 Nature 201 382Google Scholar

    [39]

    Finney J L, Bernal J D 1997 Proc. Royal Society of London. A. Mathemat. Phys. Sci. 319 479Google Scholar

    [40]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [41]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007Google Scholar

    [42]

    Liu C S, Xia J, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506Google Scholar

    [43]

    Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [44]

    Li D H, Moore R A, Wang S 1988 J. Chem. Phys. 89 4309Google Scholar

    [45]

    Mitchell T E, Unal O 1991 J. Electro. Mater. 20 723Google Scholar

  • [1] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [2] 汪建元, 林光杨, 王佳琪, 李成. 简并态锗在大注入下的自发辐射谱模拟. 物理学报, 2017, 66(15): 156102. doi: 10.7498/aps.66.156102
    [3] 樊倩, 徐建刚, 宋海洋, 张云光. 层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究. 物理学报, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [4] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [5] 王杰, 韩勤, 杨晓红, 倪海桥, 贺继方, 王秀平. 高稳定线性调谐GaAs基波长可调谐共振腔增强型探测器. 物理学报, 2012, 61(1): 018502. doi: 10.7498/aps.61.018502
    [6] 毕娟, 金光勇, 倪晓武, 张喜和, 姚志健. 532nm长脉冲激光致GaAs热分解损伤的半解析法分析. 物理学报, 2012, 61(24): 244209. doi: 10.7498/aps.61.244209
    [7] 王秀平, 杨晓红, 韩勤, 鞠研玲, 杜云, 朱彬, 王杰, 倪海桥, 贺继方, 王国伟, 牛智川. 图形衬底量子线生长制备与荧光特性研究. 物理学报, 2011, 60(2): 020703. doi: 10.7498/aps.60.020703
    [8] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [9] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活后的表面势垒评估研究. 物理学报, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [10] 彭银生, 叶小玲, 徐波, 牛洁斌, 贾锐, 王占国, 梁松, 杨晓红. 二维GaAs 基光子晶体微腔的制作与光谱特性分析. 物理学报, 2010, 59(10): 7073-7077. doi: 10.7498/aps.59.7073
    [11] 牛军, 杨智, 常本康, 乔建良, 张益军. 反射式变掺杂GaAs光电阴极量子效率模型研究. 物理学报, 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [12] 滕利华, 余华梁, 左方圆, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化的能量演化研究. 物理学报, 2008, 57(10): 6598-6603. doi: 10.7498/aps.57.6598
    [13] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究. 物理学报, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [14] 刘玉敏, 俞重远, 杨红波, 黄永箴. InAs/GaAs透镜形量子点超晶格材料的纵向和横向周期对应变场分布的影响. 物理学报, 2006, 55(10): 5023-5029. doi: 10.7498/aps.55.5023
    [15] 徐海红, 焦中兴, 刘晓东, 雷 亮, 文锦辉, 王 惠, 林位株, 赖天树. GaAs中电子g因子的温度和能量依赖性的飞秒激光吸收量子拍研究. 物理学报, 2006, 55(5): 2618-2622. doi: 10.7498/aps.55.2618
    [16] 汤乃云, 陈效双, 陆 卫. InAs/GaAs量子点的静压光谱压力系数研究. 物理学报, 2005, 54(5): 2277-2281. doi: 10.7498/aps.54.2277
    [17] 王庆学, 杨建荣, 孙 涛, 魏彦锋, 方维政, 何 力. Hg1-xCdxTe分子束外延薄膜晶格参数与组分关系的研究. 物理学报, 2005, 54(8): 3726-3733. doi: 10.7498/aps.54.3726
    [18] 袁先漳, 缪中林. Al/GaAs表面量子阱界面层的原位光调制反射光谱研究. 物理学报, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
    [19] 柳强, 巩马理, 闫平, 贾维溥, 崔瑞祯, 王东生. GaAs被动调Q兼输出耦合Nd∶YVO4激光特性研究. 物理学报, 2002, 51(12): 2756-2760. doi: 10.7498/aps.51.2756
    [20] 金 鹏, 潘士宏, 梁基本. SIN+ GaAs结构中的Franz-Keldysh振荡的傅里叶变换研究. 物理学报, 2000, 49(9): 1821-1828. doi: 10.7498/aps.49.1821
计量
  • 文章访问数:  3599
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 修回日期:  2023-05-17
  • 上网日期:  2023-05-18
  • 刊出日期:  2023-07-05

/

返回文章
返回