搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁子学中的拓扑物态与量子效应

王振宇 李志雄 袁怀洋 张知之 曹云姗 严鹏

引用本文:
Citation:

磁子学中的拓扑物态与量子效应

王振宇, 李志雄, 袁怀洋, 张知之, 曹云姗, 严鹏

Topological states and quantum effects in magnonics

Wang Zhen-Yu, Li Zhi-Xiong, Yuan Huai-Yang, Zhang Zhi-Zhi, Cao Yun-Shan, Yan Peng
PDF
HTML
导出引用
  • 近年来, 随着物联网、云计算、大数据以及人工智能等新兴技术的快速发展, 人们对计算能力的要求越来越高. 传统半导体器件在小型化、节能和散热等方面面临着巨大的挑战, 因此亟需寻找一种全新的信息载体代替电子进行信息传输与处理. 自旋波是磁矩进动的集体激发, 其量子化的准粒子称为磁子. 磁子的传播不依赖于传导电子的运动, 因此不会产生焦耳热, 能够克服日益显著的器件发热问题, 因此磁子器件在低功耗信息存储与计算领域具有重要的应用前景. 本文介绍磁子学近年来的一些重要研究进展, 主要包括自旋波的手性传播, 自旋波与磁孤子非线性散射导致的磁子频率梳, 磁孤子的拓扑边界态和高阶角态, 以及磁子量子态、基于磁子的混合量子体系和腔磁子学. 最后, 对磁子学的未来发展趋势及其前景进行分析与展望.
    In recent years, with the rapid development of the emerging technologies including the internet of things, cloud computing, big data, and artificial intelligence, higher computing capability is required. Traditional semiconductor devices are confronting huge challenges brought by device miniaturization, energy consumption, heat dissipation, etc. Moore’s law which succeeds in guiding downscaling and upgrading of microelectronics is nearing its end. A new information carrier, instead of electrons, is required urgently for information transmission and processing. Spin waves are collectively excited waves in ordered magnets, and the quantized quasi particle is referred to as magnon. The propagation of magnons does not involve electron motion and produces no Joule heating, which can solve the increasing significant issues of heating dissipation in electronic devices. Thus, magnon-based devices have important application prospects in low-power information storage and computing. In this review, we first introduce the recent advances in the excitation, propagation, manipulation, detection of spin waves and magnon-based devices. Then, we mainly discuss the researches of our group. This part is described from four aspects: 1) Chiral magnonics, including the chiral propagarion of magnetostatic spin waves, Dzyaloshinskii-Moriya interaction(DMI)-induced nonreciprocity of spin waves, spin-wave propagation at chiral interface, magnonic Goos-Hänchen effect, spin-wave lens, and magnonic Stern-Gerlach effect; 2) nonlinear magnonics, including three-magnon processes induced by DMI and noncollinear magnetic textures, skyrmion-induced magnonic frequency comb, twisted magnon frequency comb, and Penrose superradiance; 3) topological magnonics, including magnon Hall effect, magnonic topological insulator, magnonic topological semimetal, topological edge states and high-order corner states of magnetic solitons arranged in different crystal lattices; 4) quantum magnonics, including quantum states of magnon, magnon-based hybrid quantum systems, and cavity magnonics. Finally, the future development and prospect of magnonics are analyzed and discussed.
      通信作者: 严鹏, yan@uestc.edu.cn
      作者简介:
      严鹏, 电子科技大学教授, 博士生导师. 2006年本科毕业于中国科技大学近代物理系, 2011年于香港科技大学获物理学博士学位. 2011—2015年期间, 先后在荷兰代尔夫特理工大学、德国美因兹大学从事博士后研究工作. 2016 年回国组建电子科技大学自旋电子学理论研究组, 致力于探索磁子学中的新效应与新原理, 在磁子轨道自由度、磁子非厄米相变、磁子多体相互作用、磁子拓扑物态与量子效应等方面取得了多项创新性研究成果. 在Physics Reports, Physical Review Letters, Nature Communications 等学术期刊共发表论文70余篇. 先后承担了国家自然科学基金、国家重点研发计划等课题. 担任物理学期刊Frontiers in Physics 副主编, 牵头组织举办了多次国际国内自旋电子学研讨会, 服务研究领域与同行. 撰写了磁子学专著1部, 由英国物理学会出版社出版. 获授权中国发明专利6项
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1402802)、国家自然科学基金(批准号: 12074057, 12204089, 11604041, 11704060, 11904048)和中国博士后科学基金(批准号: 2019M653063, 2019M663461, 2020M673180)资助的课题.
      Corresponding author: Yan Peng, yan@uestc.edu.cn
    • Funds: Project supported by the National Key R&D Program, China (Grant No. 2022YFA1402802), the National Natural Science Foundation of China (Grant Nos. 12074057, 12204089, 11604041, 11704060, 11904048), and the China Postdoctoral Science Foundation (Grant Nos. 2019M653063, 2019M663461, 2020M673180)
    [1]

    Bloch F 1930 Z. Phys. 61 206Google Scholar

    [2]

    Brockhouse B N 1957 Phys. Rev. 106 859Google Scholar

    [3]

    Skarsvåg H, Holmqvist C, Brataas A 2015 Phys. Rev. Lett. 115 237201Google Scholar

    [4]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430Google Scholar

    [5]

    Kruglyak V V, Demokritov S O, Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001Google Scholar

    [6]

    Lenk B, Ulrichs H, Garbs F, Münzenberg M 2011 Phys. Rep. 507 107Google Scholar

    [7]

    Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar

    [8]

    Barman A, Gubbiotti G, Ladak S, et al. 2021 J. Phys.: Condens. Matter 33 413001Google Scholar

    [9]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [10]

    Chumak A V, Kabos P, Wu M, et al. 2022 IEEE Trans. Magn. 58 1

    [11]

    Liu C, Chen J, Liu T, et al. 2018 Nat. Commun. 9 738Google Scholar

    [12]

    Dieterle G, Förster J, Stoll H, et al. 2019 Phys. Rev. Lett. 122 117202Google Scholar

    [13]

    Albisetti E, Tacchi S, Silvani R, et al. 2020 Adv. Mater. 32 1906439Google Scholar

    [14]

    Chen J, Hu J, Yu H 2021 ACS Nano 15 4372Google Scholar

    [15]

    Hertel R, Wulfhekel W, Kirschner J 2004 Phys. Rev. Lett. 93 257202Google Scholar

    [16]

    Garcia-Sanchez F, Borys P, Soucaille R, Adam J P, Stamps R L, Kim J V 2015 Phys. Rev. Lett. 114 247206Google Scholar

    [17]

    Wagner K, Kàkay A, Schultheiss K, Henschke A, Sebastian T, Schultheiss H 2016 Nat. Nanotechnol. 11 432Google Scholar

    [18]

    Li Z, Dong B, He Y, Chen A, Li X, Tian J H, Yan C 2021 Nano Lett. 21 4708Google Scholar

    [19]

    Lan J, Yu W, Xiao J 2017 Nat. Commun. 8 178Google Scholar

    [20]

    Lan J, Yu W, Wu R, Xiao J 2015 Phys. Rev. X 5 041049

    [21]

    Yu W, Lan J, Wu R, Xiao J 2016 Phys. Rev. B 94 140410(RGoogle Scholar

    [22]

    Xing X, Zhou Y 2016 NPG Asia Mater. 8 e246Google Scholar

    [23]

    Xing X, Pong P W T, Åkerman J, Zhou Y 2017 Phys. Rev. Appl. 7 054016Google Scholar

    [24]

    Yu W, Lan J, Xiao J 2020 Phys. Rev. Appl. 13 024055Google Scholar

    [25]

    Ma F, Zhou Y, Braun H B, Lew W S 2015 Nano Lett. 15 4029Google Scholar

    [26]

    Chen Z, Ma F 2021 J. Appl. Phys. 130 090901Google Scholar

    [27]

    Dugaev V K, Bruno P, Canals B, Lacroix C 2005 Phys. Rev. B 72 024456Google Scholar

    [28]

    Hoogdalem K A V, Tserkovnyak Y, Loss D 2013 Phys. Rev. B 87 024402Google Scholar

    [29]

    Daniels M W, Yu W, Cheng R, Xiao J, Xiao D 2019 Phys. Rev. B 99 224433Google Scholar

    [30]

    Kim S K, Nakata K, Loss D, Tserkovnyak Y 2019 Phys. Rev. Lett. 122 057204Google Scholar

    [31]

    Aristov D N, Matveeva P G 2016 Phys. Rev. B 94 214425Google Scholar

    [32]

    Zhang B, Wang Z, Cao Y, Yan P, Wang X R 2018 Phys. Rev. B 97 094421Google Scholar

    [33]

    Schultheiss K, Verba R, Wehrmann F, Wagner K, Körber L, Hula T, Hache T, Kákay A, Awad A A, Tiberkevich V, Slavin A N, Fassbender J, Schultheiss H 2019 Phys. Rev. Lett. 122 097202Google Scholar

    [34]

    Körber L, Schultheiss K, Hula T, Verba R, Fassbender J, Kákay A, Schultheiss H 2020 Phys. Rev. Lett. 125 207203Google Scholar

    [35]

    Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A, Yan P 2021 Phys. Rev. Lett. 127 037202Google Scholar

    [36]

    Wang Z, Yuan H Y, Cao Y, Yan P 2022 Phys. Rev. Lett. 129 107203Google Scholar

    [37]

    Wang Z, Li Z X, Wang R, Liu B, Meng H, Cao Y, Yan P 2020 Appl. Phys. Lett. 117 222406Google Scholar

    [38]

    Yao X, Wang Z, Deng M, Li Z X, Zhang Z, Cao Y, Yan P 2021 Front. Phys. 9 729967Google Scholar

    [39]

    Yan P, Wang X S, Wang X R 2011 Phys. Rev. Lett. 107 177207Google Scholar

    [40]

    Han J, Zhang P, Hou J T, Siddiqui S A, Liu L 2019 Science 366 1121Google Scholar

    [41]

    Wang Y, Zhu D, Yang Y, et al. 2019 Science 366 1125Google Scholar

    [42]

    Jiang Y, Yuan H Y, Li Z X, Wang Z, Zhang H W, Cao Y, Yan P 2020 Phys. Rev. Lett. 124 217204Google Scholar

    [43]

    Kammerer M, Weigand M, Curcic M, et al. 2011 Nat. Commun. 2 279Google Scholar

    [44]

    Wang R, Dong X 2012 Appl. Phys. Lett. 100 082402Google Scholar

    [45]

    Zhang B, Wang W, Beg M, Fangohr H, Kuch W 2015 Appl. Phys. Lett. 106 102401Google Scholar

    [46]

    Petti D, Tacchi S, Albisetti E 2022 J. Phys. D: Appl. Phys. 55 293003Google Scholar

    [47]

    Demokritov S, Hillebrands B, Slavin A 2001 Phys. Rep. 348 441Google Scholar

    [48]

    Serga A A, Sandweg C W, Vasyuchka V I, Jungfleisch M B, Hillebrands B, Kreisel A, Kopietz P, Kostylev M P 2012 Phys. Rev. B 86 134403Google Scholar

    [49]

    Sebastian T, Schultheiss K, Obry B, Hillebrands B, Schultheiss H 2015 Front. Phys. 3 35

    [50]

    Tacchi S, Gubbiotti G, Madami M, Carlotti G 2017 J. Phys.: Condens. Matter 29 073001Google Scholar

    [51]

    Lucassen J, Schippers C F, Rutten L, et al. 2019 Appl. Phys. Lett. 115 012403Google Scholar

    [52]

    Liensberger L, Flacke L, Rogerson D, Althammer M, Gross R, Weiler M 2019 IEEE Magn. Lett. 10 5503905

    [53]

    Sluka V, Schneider T, Gallardo R A, et al. 2019 Nat. Nanotechnol. 14 328Google Scholar

    [54]

    Chumak A V, Serga A A, Jungfleisch M B, Neb R, Bozhko D A, Tiberkevich V S, Hillebrands B 2012 Appl. Phys. Lett. 100 082405Google Scholar

    [55]

    Sar T V D, Casola F, Walsworth R, et al. 2015 Nat. Commun. 6 7886Google Scholar

    [56]

    Koerner C, Dreyer R, Wagener M, Liebing N, Bauer H G, Woltersdorf G 2022 Science 375 1165Google Scholar

    [57]

    Dreyer R, Schäffer A F, Bauer H G, Liebing N, Berakdar J, Woltersdorf G 2022 Nat. Commun. 13 4939Google Scholar

    [58]

    Carmiggelt J J, Bertelli I, Mulder R W, Teepe A, Elyasi M, Simon B G, Bauer G E W, Blanter Y M, van der Sar T 2023 Nat. Commun. 14 490

    [59]

    Bejarano M, Goncalves F J T, Hache T, Hollenbach M, Heins C, Hula T, Körber L, Heinze J, Berencén Y, Helm M, Fassbender J, Astakhov G V, Schultheiss H 2022 arXiv: 2208.09036

    [60]

    Cheng R, Daniels M W, Zhu J G, Xiao D 2016 Sci. Rep. 6 24223Google Scholar

    [61]

    Cheng R, Okamoto S, Xiao D 2016 Phys. Rev. Lett. 117 217202Google Scholar

    [62]

    Zyuzin V A, Kovalev A A 2016 Phys. Rev. Lett. 117 217203Google Scholar

    [63]

    Wang W, Gu C, Zhou Y, Fangohr H 2017 Phys. Rev. B 96 024430Google Scholar

    [64]

    Wimmer T, Kamra A, Gückelhorn J, Opel M, Geprägs S, Gross R, Huebl H, Althammer M 2020 Phys. Rev. Lett. 125 247204Google Scholar

    [65]

    Rezende S M, Azevedo A, Rodríguez-Suárez R L 2019 J. Appl. Phys. 126 151101Google Scholar

    [66]

    Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A, Kläui M 2018 Nature 561 222Google Scholar

    [67]

    Shiota Y, Taniguchi T, Ishibashi M, Moriyama T, Ono T 2020 Phys. Rev. Lett. 125 017203Google Scholar

    [68]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [69]

    Holanda J, Maior D S, Azevedo A, Rezende S M 2018 Nat. Phys. 14 500Google Scholar

    [70]

    Zhang S S L, Zhang S F 2012 Phys. Rev. Lett. 109 096603Google Scholar

    [71]

    Wu H, Wan C H, Zhang X, Yuan Z H, Zhang Q T, Qin J Y, Wei H X, Han X F, Zhang S 2016 Phys. Rev. B 93 060403(RGoogle Scholar

    [72]

    Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X, Han X F 2018 Phys. Rev. Lett. 120 097205Google Scholar

    [73]

    Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S, Yu G Q, Han X F 2018 Phys. Rev. B 98 134426Google Scholar

    [74]

    Yu T, Luo Z, Bauer G W 2023 Phys. Rep. 1009 1

    [75]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930Google Scholar

    [76]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A T, Huo Y, Ma T P, Chen Y, Kwon H Y, Won C, Qiu Z Q, Schmid A K, Wu Y Z 2013 Phys. Rev. Lett. 110 177204Google Scholar

    [77]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [78]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [79]

    Serga A A, Chumak A V, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002Google Scholar

    [80]

    Mohseni M, Verba R, Brächer T, Wang Q, Bozhko D. A, Hillebrands B, Pirro P 2019 Phys. Rev. Lett. 122 197201Google Scholar

    [81]

    Zhang Z, Wang Z, Yang H, Li Z X, Cao Y, Yan P 2022 Phys. Rev. B 106 174413Google Scholar

    [82]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [83]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [84]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [85]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [86]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [87]

    Boulle O, Vogel J, Yang H, Pizzini S, Chaves D de S, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [88]

    Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D, Stiles M D 2013 Phys. Rev. B 88 184404Google Scholar

    [89]

    Cortés-Ortuño D, Landeros P 2013 J. Phys.: Condens. Matter 25 156001Google Scholar

    [90]

    Guo J, Zeng X, Yan M 2017 Phys. Rev. B 96 014404Google Scholar

    [91]

    Xia J, Zhang X, Yan M, Zhao W, Zhou Y 2016 Sci. Rep. 6 25189Google Scholar

    [92]

    Kim J V, Stamps R L, Camley R E 2016 Phys. Rev. Lett. 117 197204Google Scholar

    [93]

    Wang Z, Zhang B, Cao Y, Yan P 2018 Phys. Rev. Appl. 10 054018Google Scholar

    [94]

    Wang Z, Cao Y, Yan P 2019 Phys. Rev. B 100 064421Google Scholar

    [95]

    Mulkers J, Waeyenberge B V, Milošević M V 2018 Phys. Rev. B 97 104422Google Scholar

    [96]

    Gallardo R A, Cortés-Ortuño D, Schneider T, Roldán-Molina A, Ma F, Troncoso R E, Lenz K, Fangohr H, Lindner J, Landeros P 2019 Phys. Rev. Lett. 122 067204Google Scholar

    [97]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201Google Scholar

    [98]

    Zakeri K 2017 J. Phys.: Condens. Matter 29 013001Google Scholar

    [99]

    Jeong D E, Han D S, Kim S K 2011 Spin 1 27Google Scholar

    [100]

    Stigloher J, Decker M, Körner H S, Tanabe K, Moriyama T, Taniguchi T, Hata H, Madami M, Gubbiotti G, Kobayashi K, Ono T, Back C H 2016 Phys. Rev. Lett. 117 037204Google Scholar

    [101]

    Hioki T, Hashimoto Y, Saitoh E 2020 Commun. Phys. 3 188Google Scholar

    [102]

    Mulkers J, Waeyenberge B V, Milošević M V 2017 Phys. Rev. B 95 144401Google Scholar

    [103]

    Hong I S, Lee S W, Lee K J 2017 Curr. Appl. Phys. 17 1576Google Scholar

    [104]

    Menezes R M, Mulkers J, Silva C C S, Milošević M V 2019 Phys. Rev. B 99 104409Google Scholar

    [105]

    Lee S J, Moon J H, Lee H W, Lee K J 2017 Phys. Rev. B 96 184433Google Scholar

    [106]

    Hioki T, Tsuboi R, Johansen T H, Hashimoto Y, Saitoh E 2020 Appl. Phys. Lett. 116 112402Google Scholar

    [107]

    Goos F, Hänchen H 1947 Ann. Phys. 436 333Google Scholar

    [108]

    Declercq N F, Lamkanfi E 2008 Appl. Phys. Lett. 93 054103Google Scholar

    [109]

    Chen X, Lu X J, Ban Y, Li C F 2013 J. Opt. 15 033001Google Scholar

    [110]

    Haan V O D, Plomp J, Rekveldt T M, Kraan W H, Well A A V, Dalgliesh R M, Langridge S 2010 Phys. Rev. Lett. 104 010401Google Scholar

    [111]

    Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Sokolovskyy M L, Kłos J W, Romero-Vivas J, Krawczyk M 2012 Appl. Phys. Lett. 101 042404Google Scholar

    [112]

    Gruszecki P, Romero-Vivas J, Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Krawczyk M 2014 Appl. Phys. Lett. 105 242406Google Scholar

    [113]

    Gruszecki P, Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Romero-Vivas J, Guslienko K Y, Krawczyk M 2015 Phys. Rev. B 92 054427Google Scholar

    [114]

    Gruszecki P, Mailyan M, Gorobets O, Krawczyk M 2017 Phys. Rev. B 95 014421Google Scholar

    [115]

    Stigloher J, Taniguchi T, Körner H S, Decker M, Moriyama T, Ono T, Back C H 2018 Phys. Rev. Lett. 121 137201Google Scholar

    [116]

    Yan Z R, Xing Y W, Han X F 2021 Phys. Rev. B 104 L020413Google Scholar

    [117]

    Zhen W, Deng D 2020 Opt. Commun. 474 126067Google Scholar

    [118]

    Laliena V, Campo J 2022 Adv. Electron. Mater. 8 2100782Google Scholar

    [119]

    Artmann K 1948 Ann. Phys. 437 87Google Scholar

    [120]

    Toedt J N, Mundkowski M, Heitmann D, Mendach S, Hansen W 2016 Sci. Rep. 6 33169Google Scholar

    [121]

    Papp A, Csaba G 2018 IEEE Magn. Lett. 9 3706405

    [122]

    Dzyapko O, Borisenko I V, Demidov V E, Pernice W, Demokritov S O 2016 Appl. Phys. Lett. 109 232407Google Scholar

    [123]

    Whitehead N J, Horsley S A R, Philbin T G, Kruglyak V V 2018 Appl. Phys. Lett. 113 212404Google Scholar

    [124]

    Vogel M, Pirro P, Hillebrands B, Freymann G V 2020 Appl. Phys. Lett. 116 262404Google Scholar

    [125]

    Dai H, Xing Y, Chen M, Gao M, Guo Z, Zhang Y, Ma X, Hao X, Mohamed Z A Y, Zhang H, Liu C 2022 J. Magn. Magn. Mater. 545 168743Google Scholar

    [126]

    Zelent M, Mailyan M, Vashistha V, Gruszecki P, Gorobets O Y, Gorobets Y I, Krawczyk M 2019 Nanoscale 11 9743Google Scholar

    [127]

    Gräfe J, Gruszecki P, Zelent M, Decker M, Keskinbora K, Noske M, Gawronski P, Stoll H, Weigand M, Krawczyk M, Back C H, Goering E J, Schütz G 2020 Phys. Rev. B 102 024420Google Scholar

    [128]

    Bao W, Wang Z, Cao Y, Yan P 2020 Phys. Rev. B 102 014423Google Scholar

    [129]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A, Åkerman J 2013 Science 339 1295Google Scholar

    [130]

    Gerlach W, Stern O 1922 Z. Phys. 9 349Google Scholar

    [131]

    Castelvecchi D 2022 Nat. Rev. Phys. 4 140Google Scholar

    [132]

    Editorials 2022 Nat. Phys. 18 1381Google Scholar

    [133]

    Karnieli A, Arie A 2018 Phys. Rev. Lett. 120 053901Google Scholar

    [134]

    Li Y, Bruder C, Sun C P 2007 Phys. Rev. Lett. 99 130403Google Scholar

    [135]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [136]

    Wang Z, Bao W, Cao Y, Yan P 2022 Appl. Phys. Lett. 120 242403Google Scholar

    [137]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar

    [138]

    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E 2010 Nature 464 262Google Scholar

    [139]

    Schultheiss H, Vogt K, Hillebrands B 2012 Phys. Rev. B 86 054414Google Scholar

    [140]

    Kreil A J E, Bozhko D A, Musiienko-Shmarova H Y, Vasyuchka V I, L’vov V S, Pomyalov A, Hillebrands B, Serga A A 2018 Phys. Rev. Lett. 121 077203Google Scholar

    [141]

    Chumak A V, Serga A A, Hillebrands B 2014 Nat. Commun. 5 4700Google Scholar

    [142]

    Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lägel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana S D, Dobrovolskiy O V, Brächer T, Pirro P, Chumak A V 2020 Nat. Electron. 3 765Google Scholar

    [143]

    Stancil D D, Prabhakar A 2009 Spin Waves: Theory and Applications (New York: Springer) pp273–280

    [144]

    Costa Filho R N, Cottam M G, Farias G A 2000 Phys. Rev. B 62 6545Google Scholar

    [145]

    Verba R, Körber L, Schultheiss K, Schultheiss H, Tiberkevich V, Slavin A 2021 Phys. Rev. B 103 014413Google Scholar

    [146]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [147]

    Hänsch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [148]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [149]

    Bjork B J, Bui T Q, Heckl O H, Changala P B, Spaun B, Heu P, Follman D, Deutsch C, Cole G D, Aspelmeyer M, Okumura M, Ye J 2016 Science 354 444Google Scholar

    [150]

    Liang Q, Chanv Y C, Bryan Changala P, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. USA 118 e2105063118Google Scholar

    [151]

    Cao L S, Qi D X, Peng R W, Wang M, Schmelcher P 2014 Phys. Rev. Lett. 112 075505Google Scholar

    [152]

    Ganesan A, Do C, Seshia A 2017 Phys. Rev. Lett. 118 033903Google Scholar

    [153]

    Schütte C, Garst M 2014 Phys. Rev. B 90 094423Google Scholar

    [154]

    Sun J, Shi S, Wang J 2022 Adv. Eng. Mater. 24 2101245Google Scholar

    [155]

    Zhou Z W, Wang X G, Nie Y Z, Xia Q L, Guo G H 2021 J. Magn. Magn. Mater. 534 168046Google Scholar

    [156]

    Xiong H 2023 Fundam. Res. 3 8

    [157]

    Hula T, Schultheiss K, Gonçalves F J T, Körber L, Bejarano M, Copus M, Flacke L, Liensberger L, Buzdakov A, Kákay A, Weiler M, Camley R, Fassbender J, Schultheiss H 2022 Appl. Phys. Lett. 121 112404Google Scholar

    [158]

    Rao J W, Yao B, Wang C Y, Zhang C, Yu T, Lu W 2023 Phys. Rev. Lett. 130 046705

    [159]

    Jia C, Ma D, Schäffer A F, Berakdar J 2019 Nat. Commun. 10 2077Google Scholar

    [160]

    Jia C, Chen M, Schäffer A F, Berakdar J 2021 NPJ Comput. Mater. 7 101Google Scholar

    [161]

    Guslienko K Y 2008 J. Nanosci. Nanotechnol. 8 2745Google Scholar

    [162]

    Penrose R 2002 Gen. Relativ. Gravit. 34 1141

    [163]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [164]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [165]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [166]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [167]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [168]

    Zhang X, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [169]

    Ma G, Xiao M, Chan C T 2019 Nat. Rev. Phys. 1 281Google Scholar

    [170]

    Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Thomale R 2018 Commun. Phys. 1 39Google Scholar

    [171]

    Li Z X, Cao Y S, Yan P 2021 Phys. Rep. 915 1Google Scholar

    [172]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [173]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651(RGoogle Scholar

    [174]

    Slager R J, Rademaker L, Zaanen J, Balents L 2015 Phys. Rev. B 92 085126Google Scholar

    [175]

    Kariyado T, Morimoto T, Hatsugai Y 2018 Phys. Rev. Lett. 120 247202Google Scholar

    [176]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297Google Scholar

    [177]

    Li Z X, Cao Y S, Yan P, Wang X R 2019 npj Comput. Mater. 5 107Google Scholar

    [178]

    Li Z X, Cao Y S, Wang X R, Yan P 2020 Phys. Rev. Appl. 13 064058Google Scholar

    [179]

    Li Z X, Cao Y S, Wang X R, Yan P 2020 Phys. Rev. B 101 184404Google Scholar

    [180]

    Katsura H, Nagaosa N, Lee P A 2010 Phys. Rev. Lett. 104 066403Google Scholar

    [181]

    Strohm C, Rikken G L J A, Wyder P 2005 Phys. Rev. Lett. 95 155901Google Scholar

    [182]

    Matsumoto R, Murakami S 2011 Phys. Rev. Lett. 106 197202Google Scholar

    [183]

    Zhang L, Ren J, Wang J S, Li B 2013 Phys. Rev. B 87 144101Google Scholar

    [184]

    Hirschberger M, Chisnell R, Lee Y S, Ong N P 2015 Phys. Rev. Lett. 115 106603Google Scholar

    [185]

    Hirschberger M, Krizan J W, Cava R J, Ong N P 2015 Science 348 106Google Scholar

    [186]

    Tanabe K, Matsumoto R, Ohe J I, Murakami S, Moriyama T, Chiba D, Kobayashi K, Ono T 2016 Phys. Status Solidi B 253 7837

    [187]

    Mook A, Henk J, Mertig I 2014 Phys. Rev. B 90 024412Google Scholar

    [188]

    Shindou R, Ohe J I, Matsumoto R, Murakami S, Saitoh E 2013 Phys. Rev. B 87 174402Google Scholar

    [189]

    Shindou R, Matsumoto R, Murakami S, Ohe J I 2013 Phys. Rev. B 87 174427Google Scholar

    [190]

    Wang X S, Su Y, Wang X R 2017 Phys. Rev. B 95 014435Google Scholar

    [191]

    Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y, Nagaosa N 2014 Nat. Mater. 13 241Google Scholar

    [192]

    Mook A, Henk J, Mertig I 2016 Phys. Rev. Lett. 117 157204Google Scholar

    [193]

    Su Y, Wang X S, Wang X R 2017 Phys. Rev. B 95 224403Google Scholar

    [194]

    Su Y, Wang X R 2017 Phys. Rev. B 96 104437Google Scholar

    [195]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [196]

    Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [197]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [198]

    Wang X S, Zhang H W, Wang X R 2018 Phys. Rev. Appl. 9 024029Google Scholar

    [199]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577Google Scholar

    [200]

    Makhfudz I, Krüger B, Tchernyshyov O 2012 Phys. Rev. Lett. 109 217201Google Scholar

    [201]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [202]

    Catalan G, Seidel J, Ramesh R, Scott J E 2012 Rev. Mod. Phys. 84 119Google Scholar

    [203]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [204]

    Pribiag V S, Krivorotov I N, Fuchs G D, Braganca P M, Ozatay O, Sankey J C, Ralph D C, Buhrman R A 2007 Nat. Phys. 3 498Google Scholar

    [205]

    Han D S, Vogel A, Jung H, Lee K S, Weigand M, Stoll H, Schütz G, Fischer P, Meier G, Kim S K 2013 Sci. Rep. 3 2262Google Scholar

    [206]

    Kim J, Yang J, Cho Y J, Kim B, Kim S K 2017 Sci. Rep. 7 45185Google Scholar

    [207]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [208]

    Kim S K, Tserkovnyak Y 2017 Phys. Rev. Lett. 119 077204Google Scholar

    [209]

    Li Z X, Wang C, Cao Y S, Yan P 2018 Phys. Rev. B 98 180407Google Scholar

    [210]

    Li Z X, Wang Z Y, Zhang Z Z, Cao Y S, Yan P 2021 Phys. Rev. B 103 214442Google Scholar

    [211]

    Li Z X, Wang X S, Song L L, Cao Y S, Yan P 2022 Phys. Rev. Appl. 17 024054Google Scholar

    [212]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [213]

    Li Z X, Wang Z Y, Cao Y S, Zhang H W, Yan P 2021 Phys. Rev. B 103 054438Google Scholar

    [214]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204Google Scholar

    [215]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406Google Scholar

    [216]

    Thiele A A 1973 Phys. Rev. Lett. 30 230Google Scholar

    [217]

    Shibata J, Shigeto K, Otani Y 2003 Phys. Rev. B 67 224404Google Scholar

    [218]

    Büttner F, Moutafis C, Schneider M, Krüger B, Günther C M, Geilhufe J, Schmising C V K, Mohanty J, Pfau B, Schaffert S, Bisig A, Foerster M, Schulz T, Vaz C A F, Franken J H, Swagten H J M, Kläui M, Eisebitt S 2015 Nat. Phys. 11 225Google Scholar

    [219]

    Ivanov B A, Avanesyan G G, Khvalkovskiy A V, Kulagin N E, Zaspel C E, Zvezdin K A 2010 JETP Lett. 91 178Google Scholar

    [220]

    Sukhostavets O V, González J, Guslienko K Y 2013 Phys. Rev. B 87 094402Google Scholar

    [221]

    Yang H, Li Z X, Liu Y, Cao Y, Yan P 2020 Phys. Rev. Res. 2 022028Google Scholar

    [222]

    Song L, Yang H, Cao Y, Yan P 2020 Nano Lett. 20 7566Google Scholar

    [223]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [224]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Informaiton (Cambridge: Cambridge University Press)

    [225]

    Arute F 2019 Nature 574 505Google Scholar

    [226]

    MacFarlane A G J, Dowling J P, Milburn G J 2003 Philos. Trans. A Math. Phys. Eng. Sci. 361 1655Google Scholar

    [227]

    Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513Google Scholar

    [228]

    Andersen U L, Neergaard-Nielsen J S, Loock P van, Furusawa A 2015 Nat. Phys. 11 713Google Scholar

    [229]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [230]

    Liu Z X, Xiong H, Wu Y 2019 Phys. Rev. B 100 134421Google Scholar

    [231]

    Yuan H Y, Duine R A 2020 Phys. Rev. B 102 100402Google Scholar

    [232]

    Xie J K, Ma S L, Li F L 2020 Phys. Rev. A 101 042331Google Scholar

    [233]

    Sharma S, Bittencourt V A S V, Karenowska A D, Kusminskiy S V 2021 Phys. Rev. B 103 L100403Google Scholar

    [234]

    Sun F X, Zheng S S, Xiao Y, Gong Q, He Q, Xia K 2021 Phys. Rev. Lett. 2021 087203

    [235]

    Paul H 1982 Rev. Mod. Phys. 54 1061Google Scholar

    [236]

    Zhao J, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203Google Scholar

    [237]

    Yuan H Y, Zheng S, Ficek Z, He Q Y, Yung M-H 2020 Phys. Rev. B 101 014419Google Scholar

    [238]

    Kamra A, Belzig W, Brataas A 2020 Appl. Phys. Lett. 117 090501Google Scholar

    [239]

    Auld B A 1963 J. Appl. Phys. 34 1629Google Scholar

    [240]

    Chow K K, Hines M E 1966 J. Appl. Phys. 37 5000Google Scholar

    [241]

    Soykal Ö O, Flatté M E 2010 Phys. Rev. Lett. 104 077202Google Scholar

    [242]

    Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar

    [243]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203Google Scholar

    [244]

    Yu W, Wang J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201Google Scholar

    [245]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M-H 2020 Phys. Rev. Lett. 124 053602Google Scholar

    [246]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [247]

    Zhang X, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [248]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425Google Scholar

    [249]

    Rückriegel A, Kopietz P, Bozhko D A, Serga A A, Hillebrands B 2014 Phys. Rev. B 89 184413Google Scholar

    [250]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [251]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [252]

    Gonzalez-Ballestero C, Gieseler J, Romero-Isart O 2020 Phys. Rev. Lett. 124 093602Google Scholar

    [253]

    Colombano M F, Arregui G, Bonell F, Capuj N E, Chavez-Angel E, Pitanti A, Valenzuela S O, Sotomayor-Torres C M, Navarro-Urrios D, Costache M V 2020 Phys. Rev. Lett. 125 147201Google Scholar

    [254]

    Li J, Wang Y P, Wu W J, Zhu S Y, You J 2021 PRX Quantum 2 040344Google Scholar

    [255]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [256]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [257]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [258]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [259]

    Cao Y, Yan P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423Google Scholar

    [260]

    Rameshti B Z, Cao Y, Bauer G E W 2015 Phys. Rev. B 91 214430Google Scholar

    [261]

    Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E W, Blanter Y M 2022 Phys. Rep. 979 1Google Scholar

    [262]

    Feng L, Xu Y, Fegadolli W S, Lu M, Oliveira J E B, Almeida V R, Chen Y, Scherer A 2013 Nat. Matter. 12 108Google Scholar

    [263]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [264]

    Jing H, özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [265]

    Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N, Rotter S 2016 Nature 537 76Google Scholar

    [266]

    Lee J M, Kottos T, Shapiro B 2015 Phys. Rev. B 91 094416Google Scholar

    [267]

    Yang H, Wang C, Yu T, Cao Y, Yan P 2018 Phys. Rev. Lett. 121 197201Google Scholar

    [268]

    Yu T, Yang H, Song L, Yan P, Cao Y 2020 Phys. Rev. B 101 144414Google Scholar

    [269]

    Cao Y, Yan P 2019 Phys. Rev. B 99 214415Google Scholar

    [270]

    Zhang D, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Commun. 8 1368Google Scholar

    [271]

    Annapureddy V, Palneedi H, Yoon W H, Park D S, Choi J J, Hahn B D, Ahn C W, Kim J W, Jeong D Y, Ryu J 2017 Sens. Actuator, A 260 206Google Scholar

    [272]

    Cao Y, Yan P 2022 Phys. Rev. B 105 064418Google Scholar

    [273]

    Nakata K, Kim S K 2021 J. Phys. Soc. Jpn. 90 081004Google Scholar

    [274]

    Zollner K, Petrović M D, Dolui K, Plecháč P, Nikolić B K, Fabian J 2020 Phys. Rev. Res. 2 043057Google Scholar

    [275]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [276]

    Tong Q, Liu F, Xiao J, Yao W 2018 Nano Lett. 18 7194Google Scholar

    [277]

    Ghader D 2020 Sci. Rep. 10 15069Google Scholar

    [278]

    Li Y H, Cheng R 2020 Phys. Rev. B 102 094404Google Scholar

    [279]

    Chen J, Zeng L, Wang H, Madami M, Gubbiotti G, Liu S, Zhang J, Wang Z, Jiang W, Zhang Y, Yu D, Ansermet J P, Yu H 2022 Phys. Rev. B 105 094445Google Scholar

    [280]

    Gubbiotti G 2019 Three Dimensional Magnonics: Layered Micro- and Nanostructures (New York: Jenny Stanford Publishing)

    [281]

    Gubbiotti G, Zhou X, Haghshenasfard Z, Cottam M G, Adeyeye A O 2018 Phys. Rev. B 97 134428Google Scholar

    [282]

    Chen J, Yu T, Liu C, Liu T, Madami M, Shen K, Zhang J, Tu S, Alam M S, Xia K, Wu M, Gubbiotti G, Blanter Y M, Bauer G E W, Yu H 2019 Phys. Rev. B 100 104427Google Scholar

    [283]

    Li S, Shen K, Xia K 2020 Phys. Rev. B 102 224413Google Scholar

    [284]

    Tai J S B, Smalyukh I I 2018 Phys. Rev. Lett. 121 187201Google Scholar

    [285]

    Wolf D, Schneider S, Rößler U K, et al. 2022 Nat. Nanotechnol. 17 250Google Scholar

    [286]

    Grelier M, Godel F, Vecchiola A, et al. 2022 Nat. Commun. 13 6843Google Scholar

    [287]

    Träger N, Gruszecki P, Lisiecki F, Groß F, Förster J, Weigand M, Głowiński H, Kuświk P, Dubowik J, Schütz G, Krawczyk M, Gräfe J 2021 Phys. Rev. Lett. 126 057201Google Scholar

    [288]

    Mahmoud A, Ciubotaru F, Vanderveken F, Chumak A V, Hamdioui S, Adelmann C, Cotofana S 2020 J. Appl. Phys. 128 161101Google Scholar

    [289]

    Kostylev M P, Serga A A, Schneider T, Leven B, Hillebrands B 2005 Appl. Phys. Lett. 87 153501Google Scholar

    [290]

    Khitun A, Bao M, Wang K L 2010 J. Phys. D: Appl. Phys. 43 264005Google Scholar

    [291]

    Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B, Chumak A V 2018 Sci. Adv. 4 e1701517Google Scholar

    [292]

    Papp Á, Porod W, Csaba G 2021 Nat. Commun. 12 6422Google Scholar

    [293]

    Wang Q, Chumak A V, Pirro P 2021 Nat. Commun. 12 2636Google Scholar

  • 图 1  磁子学领域的研究框架及其分支[11,16,25,35,55,72,73,88,198,229]

    Fig. 1.  Framework and its branches in the field of magnonics[11,16,25,35,55,72,73,88,198,229]

    图 2  (a)静磁表面自旋波的非互易传播示意图[8]; (b)静磁表面自旋波非互易传播对缺陷的鲁棒性[80]

    Fig. 2.  (a) Schematic illustration[8]; (b) robustness character of nonreciprocal propagation of magnetostatic surface spin waves[80]

    图 3  (a)右手和线性极化微波场驱动下的自旋波振幅; (b)左手微波场驱动下自旋波的振幅; (c)微波场频率为5.1和6.7 GHz时, 自旋波的非互易传播[81]

    Fig. 3.  (a) Spin-wave amplitudes under the right-handed and linearly polarized microwave fields; (b) amplitudes of spin waves driven by left-handed polarized microwave field; (c) nonreciprocal propagation of spin waves at two field frequencies 5.1 and 6.7 GHz[81]

    图 4  (a)二维磁性薄膜示意图, $ {\boldsymbol{m}} $为磁矩单位矢量, 与$+\hat{{\boldsymbol{z}}}$轴之间的夹角为θ, $ {\boldsymbol{k}} $为自旋波波矢, 与$+\hat{{\boldsymbol{x}}}$轴之间的夹角为$ \phi_k $; (b)波长相同的自旋波沿垂直于磁矩方向传播时存在的频率差[97]; (c)同频自旋波沿垂直于磁矩方向反向传播时的波长[88]; (d)自旋波在波矢空间的等频曲线[93]; (e)波矢平行于磁矩时, 自旋波的非共线传播[93]; (f)在纳米带中传播的自旋波波前倾斜(群速平行于磁矩方向)[90]

    Fig. 4.  (a) Schematic illustration of an ultrathin film, $ {\boldsymbol{m}} $ is the unit magnetization vector having an angle θ with the $+\hat{{\boldsymbol{z}}}$ axis, $ {\boldsymbol{k}} $ is the wavevector of spin wave making an angle $ \phi_k $ with the $+\hat{{\boldsymbol{x}}}$ axis; (b) frequency difference of spin waves with opposite wave vectors perpendicular to the magnetization[97]; (c) wavelength of spin waves with the same frequency and opposite $ {\boldsymbol{k}} $ perpendicular to the magnetization[88]; (d) isofrequency curve of spin waves in the wave vector space[93]; (e) non-collinear propagation of spin waves with opposite wave vectors parallel with the magnetization[93]; (f) spin-wave canting for spin waves propagation in the nanostripe (the group velocity is parallel with the magnetization)[90]

    图 5  (a)自旋波在DMI 界面传播所遵循的斯奈尔定律示意图. 不同角度入射的自旋波在DMI 界面处的传播 (b) $ \theta_\mathrm{i}=-60^{\circ} $; (c) $ \theta_\mathrm{i}=-18^{\circ} $; (d) $ \theta_\mathrm{i}=0^{\circ} $; (e) $ \theta_\mathrm{i}=18^{\circ} $; (f) $ \theta_\mathrm{i}=60^{\circ} $[93]

    Fig. 5.  (a) Schematic of the generalized Snell's law for the spin-wave scattering at a heterochiral interface. Spin-wave propagation through the DMI interface under different incident angles: (b) $ \theta_\mathrm{i}=-60^{\circ} $; (c) $ \theta_\mathrm{i}=-18^{\circ} $; (d) $ \theta_\mathrm{i}=0^{\circ} $; (e) $ \theta_\mathrm{i}=18^{\circ} $; (f) $ \theta_\mathrm{i}=60^{\circ} $[93]

    图 6  (a)自旋波发生全反射时的强度分布, $ \varDelta_\mathrm{r} $为GH位移; (b) GH位移随入射角和DMI强度变化的相图; (c)固定DMI强度$D=3.0 \;\mathrm{mJ/m^2}$, GH位移随入射角度的变化; (d)固定入射角度为$ \theta_\mathrm{i}=-70^{\circ} $时, GH位移随DMI强度的变化[94]

    Fig. 6.  (a) Intensity map of spin waves reflected from the DMI interface, $ \varDelta_\mathrm{r} $ is the GH shift; (b) phase diagram of the GH shift in dependence on the incident angle and DMI strength; (c) GH shift as a function of the incident angle for $D=3.0\; \mathrm{mJ/m^2}$; (d) dependence of the GH shift on the DMI constant for $ \theta_\mathrm{i}=-70^{\circ} $[94]

    图 7  (a)自旋波在半圆形界面散射所遵循的广义斯奈尔定律的示意图; (b)自旋波焦点的理论计算模型图; (c)自旋波离轴聚焦的微磁模拟结果; (d)焦点坐标随自旋波频率的变化[128]

    Fig. 7.  (a) Schematic plot of the generalized Snell’s law for the spin-wave scattering at a semicircle interface; (b) theoretical model of the focal-point coordinates calculation; (c) micromagnetic simulation results of the off-axis focusing of spin waves; (d) focal-point coordinates as a function of the spin-wave frequency[128]

    图 8  (a)等磁程原理示意图; (b)利用椭圆界面构造磁子透镜聚焦自旋波的微磁模拟结果; (c)自旋波聚焦产生斯格明子的过程[37]

    Fig. 8.  (a) Schematic of the identical magnonic path length principle; (b) micromagnetic simulation of the spin-wave focusing by the magnonic lens constructed by an elliptical interface; (c) the process of the skyrmion generated by the spin-wave focusing[37]

    图 9  (a)电子斯特恩盖拉赫效应的示意图; (b)磁子斯特恩盖拉赫效应的示意图; (c)一束线性极化的自旋波经过DMI界面被分为两束极化相反(左手和右手)的自旋波; (d)和(e)分别为线性极化自旋波经过半圆形异手性界面传播的理论和微磁模拟结果; (f)实验上利用自旋波双聚焦产生自旋流和探测的示意图[136]

    Fig. 9.  (a) Schematic illustration of the electronic Stern-Gerlach effect; (b) schematic illustration of the magnonic Stern-Gerlach effect; (c) a linearly-polarized spin-wave beam propagates through a DMI interface and is divided into two spin-wave beams with opposite polarizations; (d) analytical and (e) micromagnetic simulation results of the bi-focusing of spin waves propagating through a semi-circle DMI interface; (f) schematic of the spin-current generation by the bi-focusing of spin waves and detection[136].

    图 10  (a)三磁子融合, (b)三磁子分裂, 以及(c)四磁子散射过程示意图

    Fig. 10.  Schematic of (a) three-magnon confluence, (b) three-magnon splitting, and (c) four-magnon scattering process

    图 11  (a) DMI诱导的三磁子过程[93]; (b)磁畴壁诱导的三磁子过程[32]

    Fig. 11.  Schematic illustration of three-magnon processes induced by (a) the DMI[93] and (b) domain wall[32]

    图 12  (a)磁子-斯格明子非线性散射产生自旋波频率梳的示意图; (b)微磁学模拟验证结果[35]

    Fig. 12.  (a) Schematic of nonlinear magnon-skyrmion scattering induced spin-wave frequency comb; (b) micromagnetic simulation results[35].

    图 13  (a)涡旋自旋波与旋进涡核之间发生非线性散射产生涡旋自旋波频率梳的示意图以及微磁模拟验证结果; (b)涡旋自旋波频率梳的模式分布[36]

    Fig. 13.  (a) Schematic of twisted magnon frequency comb induced by nonlinear scattering between twisted spin waves and gyrating vortex core, and the verification of micromagnetic simulation results; (b) mode profiles of twisted magnon frequency comb[36]

    图 14  涡旋自旋波发生彭罗斯超辐射效应时频率梳模式的振幅以及模式分布[36]

    Fig. 14.  Amplitude and mode profile of twisted magnon frequency comb with and without Penrose superradiance effect[36]

    图 15  不同类型的拓扑绝缘体示意图 (a)一阶拓扑绝缘体及不同维度下系统的边界态; (b)二阶拓扑绝缘体及对应边界态(角态和铰链态); (c)三阶拓扑绝缘体及对应边界态(角态)[171]

    Fig. 15.  Schematic plot for different types of TIs: (a) The first-order TI and edge states in different dimensions; (b) the second-order TI and edge states (corner state and hinge states); (c) the third-order TI and edge states (corner states)[171]

    图 16  (a) 烧绿石绝缘铁磁体$ {\rm{Lu}}_{2}{\rm{V}}_{2}{\rm{O}}_{7} $的晶体结构示意图; (b)磁子霍尔效应: 纵向的温度梯度导致横向热磁子流; (c)不同温度下, 热霍尔电导随磁场的变化[176]

    Fig. 16.  (a) Crystal structure of pyrochlore ferromagnet $ {\rm{Lu}}_{2}{\rm{V}}_{2}{\rm{O}}_{7} $; (b) magnon Hall effect: the longitudinal temperature gradient leads to the transverse thermal magnon current; (c) magnetic field dependence of the thermal Hall conductivity for various temperatures[176]

    图 17  (a)磁子波包的自转产生的磁子边界流; (b)沿边界传播的磁子; (c)处于平衡态的边界磁子流; (d)温度梯度的施加会导致有限热霍尔电流的产生[182]

    Fig. 17.  (a) Self-rotation of a magnon wave packet with a magnon edge current; (b) magnon near the boundary; (c) magnon edge current in equilibrium; (d) a finite thermal Hall current emerges when temperature gradient is applied[182]

    图 18  (a)半无限大kagome晶格结构; (b)系统的相图及Chern数; (c)—(f)不同拓扑非平凡相(图(b)中红点所示)所对应的能带结构[187]

    Fig. 18.  (a) Semi-infinite kagome lattice; (b) topological phase diagram of the system with different Chern numbers; (c)–(f) band structures for different topologically nontrivial phases as marked with red dots in panel (b)[187]

    图 19  (a)堆叠蜂巢型铁磁体示意图; (b)第一体布里渊区和表面布里渊区; (c), (d)外尔磁子的能带结构, 红色和蓝色小球分别表示手性为$ +1 $和–1的外尔点; (e), (f)贝里曲率的空间分布; (g), (h)有限大系统的能带结构[194]

    Fig. 19.  (a) Schematic diagram of stacked honeycomb ferromagnets; (b) the first bulk Brillouin zone and the first surface Brillouin zone of the system; (c), (d) band structures of Weyl magnons, the Weyl nodes of chirality $ \pm1 $ are marked by red and blue dots, respectively; (e), (f) corresponding Berry curvatures of the magnon bands; (g), (h) band structures of finite system[194]

    图 20  (a)自旋波传播示意图, 黑色箭头表示磁矩的方向, 黄色箭头表示自旋波的传播方向; (b)自旋波二极管; (c)自旋波分束器; (d)自旋波干涉仪示意图[198]

    Fig. 20.  (a) Schematic illustration of SW propagation, the black arrows denote the direction of magnetization, yellow arrows represent the propagation direction of SW; (b) illustrations of SW diode; (c) SW beam splitters; (d) SW interferometers[198]

    图 21  (a)磁泡, (b)涡旋, (c)布洛赫型斯格明子, (d)奈尔型斯格明子, (e)反涡旋, (f)反斯格明子, (g)奈尔型畴壁, (h)涡旋型畴壁和(i)布洛赫型畴壁微磁结构示意图[171]

    Fig. 21.  Micromagnetic structures of (a) magnetic bubble, (b) vortex, (c) Bloch-type skyrmion, (d) Néel-type skyrmion, (e) antivortex, (f) antiskyrmion, (g) Néel-type, (h) vortex-type, and (i) Bloch-type domain walls[171]

    图 22  (a)被周期性缺口钉扎的涡旋, 斯格明子和畴壁赛道示意图; (b)归一化磁矩分量沿畴壁赛道中心的分布; (c)无限大畴壁赛道的能带结构; (d) Zak相随比值$ d_{1}/d_{2} $的变化; (e)对不同的$ d_{1}/d_{2} $, 有限大畴壁赛道的能谱; (f)边界态对应畴壁振荡强度的分布[213]

    Fig. 22.  (a) Illustration of the vortex, skyrmion, and DW racetrack with periodic pinnings; (b) components of normalized magnetization along the center of DW racetrack; (c) band structure of an infinite DW racetrack; (d) dependence of the Zak phase on the ratio $ d_{1}/d_{2} $; (e) spectrum of a finite DW racetrack for different $ d_{1}/d_{2} $; (f) DW-oscillation amplitude for edge state[213]

    图 23  (a)布洛赫型斯格明子组成的蜂巢阵列示意图; (b)整个系统的共振频谱; (c)半无限大系统的能带结构; 当频率f = 12.62 (d) 和16.65 GHz (e) 时边界态的传播图像[209]

    Fig. 23.  (a) Illustration of the honeycomb lattice with Bloch skyrmions; (b) resonant spectrum of the whole system; (c) band structure of the semi-infinite system; (d) snapshot of the propagation of edge states with frequency (d) f = 12.62, (e) 16.65 GHz[209]

    图 24  (a)涡旋组成的呼吸型kagome晶格; (b)耦合常数$I_{{/ /}}$和$ I_{\perp} $随距离d的变化; (c)系统的相图; (d)系统处于高阶拓扑相时, 涡旋晶格的本征频率; (e)不同模式对应涡旋振荡的分布[177]

    Fig. 24.  (a) Illustration of the breathing kagome lattice of vortices; (b) dependence of the coupling strength $I_{{/ /}}$ and $ I_{\perp} $ on the vortex–vortex distance d; (c) phase diagram of the system; (d) eigenfrequencies of kagome vortex lattice for higher-order topological phase; (e) patial distribution of vortex gyrations for different states[177]

    图 25  (a)涡旋组成的堆叠型蜂巢阵列; (b)一层结构的放大图; (c)系统的第一布里渊区; (d)系统的相图; (e)系统处于WSM2 相时, 对应半无限大晶格的能带结构[202]

    Fig. 25.  (a) Illustration of stacked honeycomb lattice composed of vortices; (b) zoomed in details of one layer; (c) the first Brillouin zone of the crystal; (d) phase diagram of the system; (e) band structures of semi-infinite system for WSM2 phase[202]

    图 26  量子磁子学研究范畴, 包括磁子量子态以及磁子与比特系统、光学系统和声学系统的耦合[229]

    Fig. 26.  Framework of quantum magnonics that includes the quantum states of magnons and its coupling with qubit platforms, photonic platforms, and phononic platforms[229]

    图 27  (a)磁子反聚束态示意图; (b)磁性小球里产生磁子反聚束态的思路示意[231]; (c)磁子的单模压缩态示意图; (d)双子晶格反铁磁里磁子的双模压缩态示意图[237]

    Fig. 27.  (a) Scheme of magnon antibunching and (b) its generation in magnetic sphere[231]; Scheme of (c) single-mode and (d) two-mode squeezed states of magnons[237].

    图 28  基于磁子的混合量子体系示意 (a)磁体-微波腔[68]; (b)磁体-量子比特[246]; (c)磁体-声子复合系统[247]

    Fig. 28.  Hybrid magnonic platforms: (a) Magnet-microwave cavity[68]; (b) magnet-qubit[246]; (c) magnet-phonon systems[247]

    图 29  第一性原理散射理论 (a) 一维散射模型; (b) 铁磁共振态与微波腔耦合的透射波谱, 在共振中心处, 两个耦合模的频率差为$ g_\text{eff} $; (c) 耦合强度随磁体厚度平方根的变化, 在厚度较小的时有良好的线性关系; 如考虑自旋交换相互作用, 高阶自旋波与微波腔的强耦合能够显示在透射波谱中 (d) 磁体厚度$ 1\; \text{μm}$, (e) 磁体厚度$ 5\; \text{μm} $; (f) 耦合强度随着自旋波阶数的增加而降低; (g) 自旋波与微波腔的耦合强度与磁体厚度的平方根均呈现线性关系, 当厚度增加时, 铁磁共振模($ p=1 $)的耦合强度较高阶模增加更多[259]

    Fig. 29.  First principle scattering theory: (a) 1-dimensional scattering model; (b) transmission spectrum of coupled microwave cavity and ferromagnet, the frequency difference between the hybrid modes at the resonant center is $ 2 g_\text{eff} $; (c) coupling strength is increasing with square root of ferromagnetic thickness, the linearity between them conforms well when the thickness is small; if we consider the exchange interaction, the standing spin wave modes are also coupled strongly with the microwave cavity, the transmission spectra are plotted when (d) $ d=1\; \text{μm}$ and (e) $d=5\; \text{μm}$; (f) coupling strength decreases with the increasing order of spin waves; (g) coupling strength for each spin wave is linearly increasing with the thickness however with different slopes. The FMR mode ($ p=1 $) has the largest slope[259].

    图 30  (a) PT对称性微波腔磁子系统; 调制参数分别为 (b) $ \varDelta=0 $ 和 (c) $ \varDelta=-0.3 $ 时, 系统本征频率随耗散-增益参数P的变化, 微波腔的频率设置为$ \omega_c/g=5 $; (d) 系统PT对称性相图; 不同参数下的散射频谱$ \varDelta=0 $ (e) $ P=0.5 $, (f) $ P=\sqrt{2} $, 以及 (g) $ P=2 $; (h) 空微波腔的共振频谱; (i) 腔磁光极化子共振峰的半宽随着耗散-增益因子的变化; (j) 三阶EP点附近的磁性灵敏度[269]

    Fig. 30.  (a) PT symmetric cavity magnon polariton system. The eigenvalues varies with the loss-gain parameter P when the detuning (b) $ \varDelta=0 $ and (c) $ \varDelta=-0.3 $, with the solid and dashed curves respectively representing the real and imaginary part of eigenfrequencies. The cavity frequency is set as $ \omega_c/g=5 $. (d) PT-symmetric phase transition diagram; transmission spectrum for different gain-loss parameters: (e) $ P=0.5 $, (f) $ P=\sqrt{2} $, and (g) $ P=2 $. The right panel in (e)–(g) shows the zero-detuning spectrum. (h) Transmission spectrum of a bare cavity. (i) Half-linewidth of CMP modes as a function of the gain-loss parameter P at the zero detuning point. (j) Sensitivity at $ P=P_\mathrm{EP3} $, symbols denote numerical results and the blue curve represents the analytical formula (42)[269].

    图 31  (a)光学腔磁子系统; (b)蓝色调制时, 入射光波频率大于光学腔共振频率, 释放出一个磁子和一个频率较低的光子; (c)红色调制时, 入射光波频率小于光学腔共振频率, 吸收出一个磁子和一个频率较高的光子; (d)光学诱导吉尔伯特系数和(e)磁场随调制因子的变化[272]

    Fig. 31.  (a) Schematic illustration of a macrospin $ {\boldsymbol{S}} $ interacting with three orthogonally propagating circularly-polarized lasers (red beams) in an optical cavity; off-resonant coupling between the driving laser ($ \omega_{\text{las}} $) and the cavity photon ($ \omega_{\text{cav}} $) mediated by magnons ($ \omega_{\text{m}}\ll\omega_{\text{cav}} $) in the (b) blue and (c) red detuning regimes; (d) optically induced magnetic gain and (e) induced magnetic field vs. the optical detuning parameter η[272]

  • [1]

    Bloch F 1930 Z. Phys. 61 206Google Scholar

    [2]

    Brockhouse B N 1957 Phys. Rev. 106 859Google Scholar

    [3]

    Skarsvåg H, Holmqvist C, Brataas A 2015 Phys. Rev. Lett. 115 237201Google Scholar

    [4]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430Google Scholar

    [5]

    Kruglyak V V, Demokritov S O, Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001Google Scholar

    [6]

    Lenk B, Ulrichs H, Garbs F, Münzenberg M 2011 Phys. Rep. 507 107Google Scholar

    [7]

    Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar

    [8]

    Barman A, Gubbiotti G, Ladak S, et al. 2021 J. Phys.: Condens. Matter 33 413001Google Scholar

    [9]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [10]

    Chumak A V, Kabos P, Wu M, et al. 2022 IEEE Trans. Magn. 58 1

    [11]

    Liu C, Chen J, Liu T, et al. 2018 Nat. Commun. 9 738Google Scholar

    [12]

    Dieterle G, Förster J, Stoll H, et al. 2019 Phys. Rev. Lett. 122 117202Google Scholar

    [13]

    Albisetti E, Tacchi S, Silvani R, et al. 2020 Adv. Mater. 32 1906439Google Scholar

    [14]

    Chen J, Hu J, Yu H 2021 ACS Nano 15 4372Google Scholar

    [15]

    Hertel R, Wulfhekel W, Kirschner J 2004 Phys. Rev. Lett. 93 257202Google Scholar

    [16]

    Garcia-Sanchez F, Borys P, Soucaille R, Adam J P, Stamps R L, Kim J V 2015 Phys. Rev. Lett. 114 247206Google Scholar

    [17]

    Wagner K, Kàkay A, Schultheiss K, Henschke A, Sebastian T, Schultheiss H 2016 Nat. Nanotechnol. 11 432Google Scholar

    [18]

    Li Z, Dong B, He Y, Chen A, Li X, Tian J H, Yan C 2021 Nano Lett. 21 4708Google Scholar

    [19]

    Lan J, Yu W, Xiao J 2017 Nat. Commun. 8 178Google Scholar

    [20]

    Lan J, Yu W, Wu R, Xiao J 2015 Phys. Rev. X 5 041049

    [21]

    Yu W, Lan J, Wu R, Xiao J 2016 Phys. Rev. B 94 140410(RGoogle Scholar

    [22]

    Xing X, Zhou Y 2016 NPG Asia Mater. 8 e246Google Scholar

    [23]

    Xing X, Pong P W T, Åkerman J, Zhou Y 2017 Phys. Rev. Appl. 7 054016Google Scholar

    [24]

    Yu W, Lan J, Xiao J 2020 Phys. Rev. Appl. 13 024055Google Scholar

    [25]

    Ma F, Zhou Y, Braun H B, Lew W S 2015 Nano Lett. 15 4029Google Scholar

    [26]

    Chen Z, Ma F 2021 J. Appl. Phys. 130 090901Google Scholar

    [27]

    Dugaev V K, Bruno P, Canals B, Lacroix C 2005 Phys. Rev. B 72 024456Google Scholar

    [28]

    Hoogdalem K A V, Tserkovnyak Y, Loss D 2013 Phys. Rev. B 87 024402Google Scholar

    [29]

    Daniels M W, Yu W, Cheng R, Xiao J, Xiao D 2019 Phys. Rev. B 99 224433Google Scholar

    [30]

    Kim S K, Nakata K, Loss D, Tserkovnyak Y 2019 Phys. Rev. Lett. 122 057204Google Scholar

    [31]

    Aristov D N, Matveeva P G 2016 Phys. Rev. B 94 214425Google Scholar

    [32]

    Zhang B, Wang Z, Cao Y, Yan P, Wang X R 2018 Phys. Rev. B 97 094421Google Scholar

    [33]

    Schultheiss K, Verba R, Wehrmann F, Wagner K, Körber L, Hula T, Hache T, Kákay A, Awad A A, Tiberkevich V, Slavin A N, Fassbender J, Schultheiss H 2019 Phys. Rev. Lett. 122 097202Google Scholar

    [34]

    Körber L, Schultheiss K, Hula T, Verba R, Fassbender J, Kákay A, Schultheiss H 2020 Phys. Rev. Lett. 125 207203Google Scholar

    [35]

    Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A, Yan P 2021 Phys. Rev. Lett. 127 037202Google Scholar

    [36]

    Wang Z, Yuan H Y, Cao Y, Yan P 2022 Phys. Rev. Lett. 129 107203Google Scholar

    [37]

    Wang Z, Li Z X, Wang R, Liu B, Meng H, Cao Y, Yan P 2020 Appl. Phys. Lett. 117 222406Google Scholar

    [38]

    Yao X, Wang Z, Deng M, Li Z X, Zhang Z, Cao Y, Yan P 2021 Front. Phys. 9 729967Google Scholar

    [39]

    Yan P, Wang X S, Wang X R 2011 Phys. Rev. Lett. 107 177207Google Scholar

    [40]

    Han J, Zhang P, Hou J T, Siddiqui S A, Liu L 2019 Science 366 1121Google Scholar

    [41]

    Wang Y, Zhu D, Yang Y, et al. 2019 Science 366 1125Google Scholar

    [42]

    Jiang Y, Yuan H Y, Li Z X, Wang Z, Zhang H W, Cao Y, Yan P 2020 Phys. Rev. Lett. 124 217204Google Scholar

    [43]

    Kammerer M, Weigand M, Curcic M, et al. 2011 Nat. Commun. 2 279Google Scholar

    [44]

    Wang R, Dong X 2012 Appl. Phys. Lett. 100 082402Google Scholar

    [45]

    Zhang B, Wang W, Beg M, Fangohr H, Kuch W 2015 Appl. Phys. Lett. 106 102401Google Scholar

    [46]

    Petti D, Tacchi S, Albisetti E 2022 J. Phys. D: Appl. Phys. 55 293003Google Scholar

    [47]

    Demokritov S, Hillebrands B, Slavin A 2001 Phys. Rep. 348 441Google Scholar

    [48]

    Serga A A, Sandweg C W, Vasyuchka V I, Jungfleisch M B, Hillebrands B, Kreisel A, Kopietz P, Kostylev M P 2012 Phys. Rev. B 86 134403Google Scholar

    [49]

    Sebastian T, Schultheiss K, Obry B, Hillebrands B, Schultheiss H 2015 Front. Phys. 3 35

    [50]

    Tacchi S, Gubbiotti G, Madami M, Carlotti G 2017 J. Phys.: Condens. Matter 29 073001Google Scholar

    [51]

    Lucassen J, Schippers C F, Rutten L, et al. 2019 Appl. Phys. Lett. 115 012403Google Scholar

    [52]

    Liensberger L, Flacke L, Rogerson D, Althammer M, Gross R, Weiler M 2019 IEEE Magn. Lett. 10 5503905

    [53]

    Sluka V, Schneider T, Gallardo R A, et al. 2019 Nat. Nanotechnol. 14 328Google Scholar

    [54]

    Chumak A V, Serga A A, Jungfleisch M B, Neb R, Bozhko D A, Tiberkevich V S, Hillebrands B 2012 Appl. Phys. Lett. 100 082405Google Scholar

    [55]

    Sar T V D, Casola F, Walsworth R, et al. 2015 Nat. Commun. 6 7886Google Scholar

    [56]

    Koerner C, Dreyer R, Wagener M, Liebing N, Bauer H G, Woltersdorf G 2022 Science 375 1165Google Scholar

    [57]

    Dreyer R, Schäffer A F, Bauer H G, Liebing N, Berakdar J, Woltersdorf G 2022 Nat. Commun. 13 4939Google Scholar

    [58]

    Carmiggelt J J, Bertelli I, Mulder R W, Teepe A, Elyasi M, Simon B G, Bauer G E W, Blanter Y M, van der Sar T 2023 Nat. Commun. 14 490

    [59]

    Bejarano M, Goncalves F J T, Hache T, Hollenbach M, Heins C, Hula T, Körber L, Heinze J, Berencén Y, Helm M, Fassbender J, Astakhov G V, Schultheiss H 2022 arXiv: 2208.09036

    [60]

    Cheng R, Daniels M W, Zhu J G, Xiao D 2016 Sci. Rep. 6 24223Google Scholar

    [61]

    Cheng R, Okamoto S, Xiao D 2016 Phys. Rev. Lett. 117 217202Google Scholar

    [62]

    Zyuzin V A, Kovalev A A 2016 Phys. Rev. Lett. 117 217203Google Scholar

    [63]

    Wang W, Gu C, Zhou Y, Fangohr H 2017 Phys. Rev. B 96 024430Google Scholar

    [64]

    Wimmer T, Kamra A, Gückelhorn J, Opel M, Geprägs S, Gross R, Huebl H, Althammer M 2020 Phys. Rev. Lett. 125 247204Google Scholar

    [65]

    Rezende S M, Azevedo A, Rodríguez-Suárez R L 2019 J. Appl. Phys. 126 151101Google Scholar

    [66]

    Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A, Kläui M 2018 Nature 561 222Google Scholar

    [67]

    Shiota Y, Taniguchi T, Ishibashi M, Moriyama T, Ono T 2020 Phys. Rev. Lett. 125 017203Google Scholar

    [68]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [69]

    Holanda J, Maior D S, Azevedo A, Rezende S M 2018 Nat. Phys. 14 500Google Scholar

    [70]

    Zhang S S L, Zhang S F 2012 Phys. Rev. Lett. 109 096603Google Scholar

    [71]

    Wu H, Wan C H, Zhang X, Yuan Z H, Zhang Q T, Qin J Y, Wei H X, Han X F, Zhang S 2016 Phys. Rev. B 93 060403(RGoogle Scholar

    [72]

    Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X, Han X F 2018 Phys. Rev. Lett. 120 097205Google Scholar

    [73]

    Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S, Yu G Q, Han X F 2018 Phys. Rev. B 98 134426Google Scholar

    [74]

    Yu T, Luo Z, Bauer G W 2023 Phys. Rep. 1009 1

    [75]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930Google Scholar

    [76]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A T, Huo Y, Ma T P, Chen Y, Kwon H Y, Won C, Qiu Z Q, Schmid A K, Wu Y Z 2013 Phys. Rev. Lett. 110 177204Google Scholar

    [77]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [78]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [79]

    Serga A A, Chumak A V, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002Google Scholar

    [80]

    Mohseni M, Verba R, Brächer T, Wang Q, Bozhko D. A, Hillebrands B, Pirro P 2019 Phys. Rev. Lett. 122 197201Google Scholar

    [81]

    Zhang Z, Wang Z, Yang H, Li Z X, Cao Y, Yan P 2022 Phys. Rev. B 106 174413Google Scholar

    [82]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [83]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [84]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [85]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [86]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [87]

    Boulle O, Vogel J, Yang H, Pizzini S, Chaves D de S, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [88]

    Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D, Stiles M D 2013 Phys. Rev. B 88 184404Google Scholar

    [89]

    Cortés-Ortuño D, Landeros P 2013 J. Phys.: Condens. Matter 25 156001Google Scholar

    [90]

    Guo J, Zeng X, Yan M 2017 Phys. Rev. B 96 014404Google Scholar

    [91]

    Xia J, Zhang X, Yan M, Zhao W, Zhou Y 2016 Sci. Rep. 6 25189Google Scholar

    [92]

    Kim J V, Stamps R L, Camley R E 2016 Phys. Rev. Lett. 117 197204Google Scholar

    [93]

    Wang Z, Zhang B, Cao Y, Yan P 2018 Phys. Rev. Appl. 10 054018Google Scholar

    [94]

    Wang Z, Cao Y, Yan P 2019 Phys. Rev. B 100 064421Google Scholar

    [95]

    Mulkers J, Waeyenberge B V, Milošević M V 2018 Phys. Rev. B 97 104422Google Scholar

    [96]

    Gallardo R A, Cortés-Ortuño D, Schneider T, Roldán-Molina A, Ma F, Troncoso R E, Lenz K, Fangohr H, Lindner J, Landeros P 2019 Phys. Rev. Lett. 122 067204Google Scholar

    [97]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201Google Scholar

    [98]

    Zakeri K 2017 J. Phys.: Condens. Matter 29 013001Google Scholar

    [99]

    Jeong D E, Han D S, Kim S K 2011 Spin 1 27Google Scholar

    [100]

    Stigloher J, Decker M, Körner H S, Tanabe K, Moriyama T, Taniguchi T, Hata H, Madami M, Gubbiotti G, Kobayashi K, Ono T, Back C H 2016 Phys. Rev. Lett. 117 037204Google Scholar

    [101]

    Hioki T, Hashimoto Y, Saitoh E 2020 Commun. Phys. 3 188Google Scholar

    [102]

    Mulkers J, Waeyenberge B V, Milošević M V 2017 Phys. Rev. B 95 144401Google Scholar

    [103]

    Hong I S, Lee S W, Lee K J 2017 Curr. Appl. Phys. 17 1576Google Scholar

    [104]

    Menezes R M, Mulkers J, Silva C C S, Milošević M V 2019 Phys. Rev. B 99 104409Google Scholar

    [105]

    Lee S J, Moon J H, Lee H W, Lee K J 2017 Phys. Rev. B 96 184433Google Scholar

    [106]

    Hioki T, Tsuboi R, Johansen T H, Hashimoto Y, Saitoh E 2020 Appl. Phys. Lett. 116 112402Google Scholar

    [107]

    Goos F, Hänchen H 1947 Ann. Phys. 436 333Google Scholar

    [108]

    Declercq N F, Lamkanfi E 2008 Appl. Phys. Lett. 93 054103Google Scholar

    [109]

    Chen X, Lu X J, Ban Y, Li C F 2013 J. Opt. 15 033001Google Scholar

    [110]

    Haan V O D, Plomp J, Rekveldt T M, Kraan W H, Well A A V, Dalgliesh R M, Langridge S 2010 Phys. Rev. Lett. 104 010401Google Scholar

    [111]

    Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Sokolovskyy M L, Kłos J W, Romero-Vivas J, Krawczyk M 2012 Appl. Phys. Lett. 101 042404Google Scholar

    [112]

    Gruszecki P, Romero-Vivas J, Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Krawczyk M 2014 Appl. Phys. Lett. 105 242406Google Scholar

    [113]

    Gruszecki P, Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Romero-Vivas J, Guslienko K Y, Krawczyk M 2015 Phys. Rev. B 92 054427Google Scholar

    [114]

    Gruszecki P, Mailyan M, Gorobets O, Krawczyk M 2017 Phys. Rev. B 95 014421Google Scholar

    [115]

    Stigloher J, Taniguchi T, Körner H S, Decker M, Moriyama T, Ono T, Back C H 2018 Phys. Rev. Lett. 121 137201Google Scholar

    [116]

    Yan Z R, Xing Y W, Han X F 2021 Phys. Rev. B 104 L020413Google Scholar

    [117]

    Zhen W, Deng D 2020 Opt. Commun. 474 126067Google Scholar

    [118]

    Laliena V, Campo J 2022 Adv. Electron. Mater. 8 2100782Google Scholar

    [119]

    Artmann K 1948 Ann. Phys. 437 87Google Scholar

    [120]

    Toedt J N, Mundkowski M, Heitmann D, Mendach S, Hansen W 2016 Sci. Rep. 6 33169Google Scholar

    [121]

    Papp A, Csaba G 2018 IEEE Magn. Lett. 9 3706405

    [122]

    Dzyapko O, Borisenko I V, Demidov V E, Pernice W, Demokritov S O 2016 Appl. Phys. Lett. 109 232407Google Scholar

    [123]

    Whitehead N J, Horsley S A R, Philbin T G, Kruglyak V V 2018 Appl. Phys. Lett. 113 212404Google Scholar

    [124]

    Vogel M, Pirro P, Hillebrands B, Freymann G V 2020 Appl. Phys. Lett. 116 262404Google Scholar

    [125]

    Dai H, Xing Y, Chen M, Gao M, Guo Z, Zhang Y, Ma X, Hao X, Mohamed Z A Y, Zhang H, Liu C 2022 J. Magn. Magn. Mater. 545 168743Google Scholar

    [126]

    Zelent M, Mailyan M, Vashistha V, Gruszecki P, Gorobets O Y, Gorobets Y I, Krawczyk M 2019 Nanoscale 11 9743Google Scholar

    [127]

    Gräfe J, Gruszecki P, Zelent M, Decker M, Keskinbora K, Noske M, Gawronski P, Stoll H, Weigand M, Krawczyk M, Back C H, Goering E J, Schütz G 2020 Phys. Rev. B 102 024420Google Scholar

    [128]

    Bao W, Wang Z, Cao Y, Yan P 2020 Phys. Rev. B 102 014423Google Scholar

    [129]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A, Åkerman J 2013 Science 339 1295Google Scholar

    [130]

    Gerlach W, Stern O 1922 Z. Phys. 9 349Google Scholar

    [131]

    Castelvecchi D 2022 Nat. Rev. Phys. 4 140Google Scholar

    [132]

    Editorials 2022 Nat. Phys. 18 1381Google Scholar

    [133]

    Karnieli A, Arie A 2018 Phys. Rev. Lett. 120 053901Google Scholar

    [134]

    Li Y, Bruder C, Sun C P 2007 Phys. Rev. Lett. 99 130403Google Scholar

    [135]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [136]

    Wang Z, Bao W, Cao Y, Yan P 2022 Appl. Phys. Lett. 120 242403Google Scholar

    [137]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar

    [138]

    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E 2010 Nature 464 262Google Scholar

    [139]

    Schultheiss H, Vogt K, Hillebrands B 2012 Phys. Rev. B 86 054414Google Scholar

    [140]

    Kreil A J E, Bozhko D A, Musiienko-Shmarova H Y, Vasyuchka V I, L’vov V S, Pomyalov A, Hillebrands B, Serga A A 2018 Phys. Rev. Lett. 121 077203Google Scholar

    [141]

    Chumak A V, Serga A A, Hillebrands B 2014 Nat. Commun. 5 4700Google Scholar

    [142]

    Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lägel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana S D, Dobrovolskiy O V, Brächer T, Pirro P, Chumak A V 2020 Nat. Electron. 3 765Google Scholar

    [143]

    Stancil D D, Prabhakar A 2009 Spin Waves: Theory and Applications (New York: Springer) pp273–280

    [144]

    Costa Filho R N, Cottam M G, Farias G A 2000 Phys. Rev. B 62 6545Google Scholar

    [145]

    Verba R, Körber L, Schultheiss K, Schultheiss H, Tiberkevich V, Slavin A 2021 Phys. Rev. B 103 014413Google Scholar

    [146]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [147]

    Hänsch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [148]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [149]

    Bjork B J, Bui T Q, Heckl O H, Changala P B, Spaun B, Heu P, Follman D, Deutsch C, Cole G D, Aspelmeyer M, Okumura M, Ye J 2016 Science 354 444Google Scholar

    [150]

    Liang Q, Chanv Y C, Bryan Changala P, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. USA 118 e2105063118Google Scholar

    [151]

    Cao L S, Qi D X, Peng R W, Wang M, Schmelcher P 2014 Phys. Rev. Lett. 112 075505Google Scholar

    [152]

    Ganesan A, Do C, Seshia A 2017 Phys. Rev. Lett. 118 033903Google Scholar

    [153]

    Schütte C, Garst M 2014 Phys. Rev. B 90 094423Google Scholar

    [154]

    Sun J, Shi S, Wang J 2022 Adv. Eng. Mater. 24 2101245Google Scholar

    [155]

    Zhou Z W, Wang X G, Nie Y Z, Xia Q L, Guo G H 2021 J. Magn. Magn. Mater. 534 168046Google Scholar

    [156]

    Xiong H 2023 Fundam. Res. 3 8

    [157]

    Hula T, Schultheiss K, Gonçalves F J T, Körber L, Bejarano M, Copus M, Flacke L, Liensberger L, Buzdakov A, Kákay A, Weiler M, Camley R, Fassbender J, Schultheiss H 2022 Appl. Phys. Lett. 121 112404Google Scholar

    [158]

    Rao J W, Yao B, Wang C Y, Zhang C, Yu T, Lu W 2023 Phys. Rev. Lett. 130 046705

    [159]

    Jia C, Ma D, Schäffer A F, Berakdar J 2019 Nat. Commun. 10 2077Google Scholar

    [160]

    Jia C, Chen M, Schäffer A F, Berakdar J 2021 NPJ Comput. Mater. 7 101Google Scholar

    [161]

    Guslienko K Y 2008 J. Nanosci. Nanotechnol. 8 2745Google Scholar

    [162]

    Penrose R 2002 Gen. Relativ. Gravit. 34 1141

    [163]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [164]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [165]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [166]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [167]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [168]

    Zhang X, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [169]

    Ma G, Xiao M, Chan C T 2019 Nat. Rev. Phys. 1 281Google Scholar

    [170]

    Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Thomale R 2018 Commun. Phys. 1 39Google Scholar

    [171]

    Li Z X, Cao Y S, Yan P 2021 Phys. Rep. 915 1Google Scholar

    [172]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [173]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651(RGoogle Scholar

    [174]

    Slager R J, Rademaker L, Zaanen J, Balents L 2015 Phys. Rev. B 92 085126Google Scholar

    [175]

    Kariyado T, Morimoto T, Hatsugai Y 2018 Phys. Rev. Lett. 120 247202Google Scholar

    [176]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297Google Scholar

    [177]

    Li Z X, Cao Y S, Yan P, Wang X R 2019 npj Comput. Mater. 5 107Google Scholar

    [178]

    Li Z X, Cao Y S, Wang X R, Yan P 2020 Phys. Rev. Appl. 13 064058Google Scholar

    [179]

    Li Z X, Cao Y S, Wang X R, Yan P 2020 Phys. Rev. B 101 184404Google Scholar

    [180]

    Katsura H, Nagaosa N, Lee P A 2010 Phys. Rev. Lett. 104 066403Google Scholar

    [181]

    Strohm C, Rikken G L J A, Wyder P 2005 Phys. Rev. Lett. 95 155901Google Scholar

    [182]

    Matsumoto R, Murakami S 2011 Phys. Rev. Lett. 106 197202Google Scholar

    [183]

    Zhang L, Ren J, Wang J S, Li B 2013 Phys. Rev. B 87 144101Google Scholar

    [184]

    Hirschberger M, Chisnell R, Lee Y S, Ong N P 2015 Phys. Rev. Lett. 115 106603Google Scholar

    [185]

    Hirschberger M, Krizan J W, Cava R J, Ong N P 2015 Science 348 106Google Scholar

    [186]

    Tanabe K, Matsumoto R, Ohe J I, Murakami S, Moriyama T, Chiba D, Kobayashi K, Ono T 2016 Phys. Status Solidi B 253 7837

    [187]

    Mook A, Henk J, Mertig I 2014 Phys. Rev. B 90 024412Google Scholar

    [188]

    Shindou R, Ohe J I, Matsumoto R, Murakami S, Saitoh E 2013 Phys. Rev. B 87 174402Google Scholar

    [189]

    Shindou R, Matsumoto R, Murakami S, Ohe J I 2013 Phys. Rev. B 87 174427Google Scholar

    [190]

    Wang X S, Su Y, Wang X R 2017 Phys. Rev. B 95 014435Google Scholar

    [191]

    Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y, Nagaosa N 2014 Nat. Mater. 13 241Google Scholar

    [192]

    Mook A, Henk J, Mertig I 2016 Phys. Rev. Lett. 117 157204Google Scholar

    [193]

    Su Y, Wang X S, Wang X R 2017 Phys. Rev. B 95 224403Google Scholar

    [194]

    Su Y, Wang X R 2017 Phys. Rev. B 96 104437Google Scholar

    [195]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [196]

    Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [197]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [198]

    Wang X S, Zhang H W, Wang X R 2018 Phys. Rev. Appl. 9 024029Google Scholar

    [199]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577Google Scholar

    [200]

    Makhfudz I, Krüger B, Tchernyshyov O 2012 Phys. Rev. Lett. 109 217201Google Scholar

    [201]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [202]

    Catalan G, Seidel J, Ramesh R, Scott J E 2012 Rev. Mod. Phys. 84 119Google Scholar

    [203]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [204]

    Pribiag V S, Krivorotov I N, Fuchs G D, Braganca P M, Ozatay O, Sankey J C, Ralph D C, Buhrman R A 2007 Nat. Phys. 3 498Google Scholar

    [205]

    Han D S, Vogel A, Jung H, Lee K S, Weigand M, Stoll H, Schütz G, Fischer P, Meier G, Kim S K 2013 Sci. Rep. 3 2262Google Scholar

    [206]

    Kim J, Yang J, Cho Y J, Kim B, Kim S K 2017 Sci. Rep. 7 45185Google Scholar

    [207]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [208]

    Kim S K, Tserkovnyak Y 2017 Phys. Rev. Lett. 119 077204Google Scholar

    [209]

    Li Z X, Wang C, Cao Y S, Yan P 2018 Phys. Rev. B 98 180407Google Scholar

    [210]

    Li Z X, Wang Z Y, Zhang Z Z, Cao Y S, Yan P 2021 Phys. Rev. B 103 214442Google Scholar

    [211]

    Li Z X, Wang X S, Song L L, Cao Y S, Yan P 2022 Phys. Rev. Appl. 17 024054Google Scholar

    [212]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [213]

    Li Z X, Wang Z Y, Cao Y S, Zhang H W, Yan P 2021 Phys. Rev. B 103 054438Google Scholar

    [214]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204Google Scholar

    [215]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406Google Scholar

    [216]

    Thiele A A 1973 Phys. Rev. Lett. 30 230Google Scholar

    [217]

    Shibata J, Shigeto K, Otani Y 2003 Phys. Rev. B 67 224404Google Scholar

    [218]

    Büttner F, Moutafis C, Schneider M, Krüger B, Günther C M, Geilhufe J, Schmising C V K, Mohanty J, Pfau B, Schaffert S, Bisig A, Foerster M, Schulz T, Vaz C A F, Franken J H, Swagten H J M, Kläui M, Eisebitt S 2015 Nat. Phys. 11 225Google Scholar

    [219]

    Ivanov B A, Avanesyan G G, Khvalkovskiy A V, Kulagin N E, Zaspel C E, Zvezdin K A 2010 JETP Lett. 91 178Google Scholar

    [220]

    Sukhostavets O V, González J, Guslienko K Y 2013 Phys. Rev. B 87 094402Google Scholar

    [221]

    Yang H, Li Z X, Liu Y, Cao Y, Yan P 2020 Phys. Rev. Res. 2 022028Google Scholar

    [222]

    Song L, Yang H, Cao Y, Yan P 2020 Nano Lett. 20 7566Google Scholar

    [223]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [224]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Informaiton (Cambridge: Cambridge University Press)

    [225]

    Arute F 2019 Nature 574 505Google Scholar

    [226]

    MacFarlane A G J, Dowling J P, Milburn G J 2003 Philos. Trans. A Math. Phys. Eng. Sci. 361 1655Google Scholar

    [227]

    Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513Google Scholar

    [228]

    Andersen U L, Neergaard-Nielsen J S, Loock P van, Furusawa A 2015 Nat. Phys. 11 713Google Scholar

    [229]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [230]

    Liu Z X, Xiong H, Wu Y 2019 Phys. Rev. B 100 134421Google Scholar

    [231]

    Yuan H Y, Duine R A 2020 Phys. Rev. B 102 100402Google Scholar

    [232]

    Xie J K, Ma S L, Li F L 2020 Phys. Rev. A 101 042331Google Scholar

    [233]

    Sharma S, Bittencourt V A S V, Karenowska A D, Kusminskiy S V 2021 Phys. Rev. B 103 L100403Google Scholar

    [234]

    Sun F X, Zheng S S, Xiao Y, Gong Q, He Q, Xia K 2021 Phys. Rev. Lett. 2021 087203

    [235]

    Paul H 1982 Rev. Mod. Phys. 54 1061Google Scholar

    [236]

    Zhao J, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203Google Scholar

    [237]

    Yuan H Y, Zheng S, Ficek Z, He Q Y, Yung M-H 2020 Phys. Rev. B 101 014419Google Scholar

    [238]

    Kamra A, Belzig W, Brataas A 2020 Appl. Phys. Lett. 117 090501Google Scholar

    [239]

    Auld B A 1963 J. Appl. Phys. 34 1629Google Scholar

    [240]

    Chow K K, Hines M E 1966 J. Appl. Phys. 37 5000Google Scholar

    [241]

    Soykal Ö O, Flatté M E 2010 Phys. Rev. Lett. 104 077202Google Scholar

    [242]

    Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar

    [243]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203Google Scholar

    [244]

    Yu W, Wang J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201Google Scholar

    [245]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M-H 2020 Phys. Rev. Lett. 124 053602Google Scholar

    [246]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [247]

    Zhang X, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [248]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425Google Scholar

    [249]

    Rückriegel A, Kopietz P, Bozhko D A, Serga A A, Hillebrands B 2014 Phys. Rev. B 89 184413Google Scholar

    [250]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [251]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [252]

    Gonzalez-Ballestero C, Gieseler J, Romero-Isart O 2020 Phys. Rev. Lett. 124 093602Google Scholar

    [253]

    Colombano M F, Arregui G, Bonell F, Capuj N E, Chavez-Angel E, Pitanti A, Valenzuela S O, Sotomayor-Torres C M, Navarro-Urrios D, Costache M V 2020 Phys. Rev. Lett. 125 147201Google Scholar

    [254]

    Li J, Wang Y P, Wu W J, Zhu S Y, You J 2021 PRX Quantum 2 040344Google Scholar

    [255]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [256]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [257]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [258]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [259]

    Cao Y, Yan P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423Google Scholar

    [260]

    Rameshti B Z, Cao Y, Bauer G E W 2015 Phys. Rev. B 91 214430Google Scholar

    [261]

    Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E W, Blanter Y M 2022 Phys. Rep. 979 1Google Scholar

    [262]

    Feng L, Xu Y, Fegadolli W S, Lu M, Oliveira J E B, Almeida V R, Chen Y, Scherer A 2013 Nat. Matter. 12 108Google Scholar

    [263]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [264]

    Jing H, özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [265]

    Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N, Rotter S 2016 Nature 537 76Google Scholar

    [266]

    Lee J M, Kottos T, Shapiro B 2015 Phys. Rev. B 91 094416Google Scholar

    [267]

    Yang H, Wang C, Yu T, Cao Y, Yan P 2018 Phys. Rev. Lett. 121 197201Google Scholar

    [268]

    Yu T, Yang H, Song L, Yan P, Cao Y 2020 Phys. Rev. B 101 144414Google Scholar

    [269]

    Cao Y, Yan P 2019 Phys. Rev. B 99 214415Google Scholar

    [270]

    Zhang D, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Commun. 8 1368Google Scholar

    [271]

    Annapureddy V, Palneedi H, Yoon W H, Park D S, Choi J J, Hahn B D, Ahn C W, Kim J W, Jeong D Y, Ryu J 2017 Sens. Actuator, A 260 206Google Scholar

    [272]

    Cao Y, Yan P 2022 Phys. Rev. B 105 064418Google Scholar

    [273]

    Nakata K, Kim S K 2021 J. Phys. Soc. Jpn. 90 081004Google Scholar

    [274]

    Zollner K, Petrović M D, Dolui K, Plecháč P, Nikolić B K, Fabian J 2020 Phys. Rev. Res. 2 043057Google Scholar

    [275]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [276]

    Tong Q, Liu F, Xiao J, Yao W 2018 Nano Lett. 18 7194Google Scholar

    [277]

    Ghader D 2020 Sci. Rep. 10 15069Google Scholar

    [278]

    Li Y H, Cheng R 2020 Phys. Rev. B 102 094404Google Scholar

    [279]

    Chen J, Zeng L, Wang H, Madami M, Gubbiotti G, Liu S, Zhang J, Wang Z, Jiang W, Zhang Y, Yu D, Ansermet J P, Yu H 2022 Phys. Rev. B 105 094445Google Scholar

    [280]

    Gubbiotti G 2019 Three Dimensional Magnonics: Layered Micro- and Nanostructures (New York: Jenny Stanford Publishing)

    [281]

    Gubbiotti G, Zhou X, Haghshenasfard Z, Cottam M G, Adeyeye A O 2018 Phys. Rev. B 97 134428Google Scholar

    [282]

    Chen J, Yu T, Liu C, Liu T, Madami M, Shen K, Zhang J, Tu S, Alam M S, Xia K, Wu M, Gubbiotti G, Blanter Y M, Bauer G E W, Yu H 2019 Phys. Rev. B 100 104427Google Scholar

    [283]

    Li S, Shen K, Xia K 2020 Phys. Rev. B 102 224413Google Scholar

    [284]

    Tai J S B, Smalyukh I I 2018 Phys. Rev. Lett. 121 187201Google Scholar

    [285]

    Wolf D, Schneider S, Rößler U K, et al. 2022 Nat. Nanotechnol. 17 250Google Scholar

    [286]

    Grelier M, Godel F, Vecchiola A, et al. 2022 Nat. Commun. 13 6843Google Scholar

    [287]

    Träger N, Gruszecki P, Lisiecki F, Groß F, Förster J, Weigand M, Głowiński H, Kuświk P, Dubowik J, Schütz G, Krawczyk M, Gräfe J 2021 Phys. Rev. Lett. 126 057201Google Scholar

    [288]

    Mahmoud A, Ciubotaru F, Vanderveken F, Chumak A V, Hamdioui S, Adelmann C, Cotofana S 2020 J. Appl. Phys. 128 161101Google Scholar

    [289]

    Kostylev M P, Serga A A, Schneider T, Leven B, Hillebrands B 2005 Appl. Phys. Lett. 87 153501Google Scholar

    [290]

    Khitun A, Bao M, Wang K L 2010 J. Phys. D: Appl. Phys. 43 264005Google Scholar

    [291]

    Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B, Chumak A V 2018 Sci. Adv. 4 e1701517Google Scholar

    [292]

    Papp Á, Porod W, Csaba G 2021 Nat. Commun. 12 6422Google Scholar

    [293]

    Wang Q, Chumak A V, Pirro P 2021 Nat. Commun. 12 2636Google Scholar

  • [1] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [2] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制. 物理学报, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [3] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [4] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [5] 刘恩克. 磁序与拓扑的耦合: 从基础物理到拓扑磁电子学. 物理学报, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [6] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [7] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输. 物理学报, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [8] 陈淑年, 廖斌, 陈琳, 张志强, 沈永青, 王浩琦, 庞盼, 吴先映, 华青松, 何光宇. 基于磁过滤技术TiAlCN/TiAlN/TiAl复合体系腐蚀及摩擦学性能. 物理学报, 2020, 69(10): 107202. doi: 10.7498/aps.69.20200012
    [9] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [10] 王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰. 拓扑光子学研究进展. 物理学报, 2019, 68(22): 224206. doi: 10.7498/aps.68.20191437
    [11] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [12] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [13] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子. 物理学报, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [14] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [15] 胡锐, 范志强, 张振华. 三角形石墨烯量子点阵列的磁电子学特性和磁输运性质. 物理学报, 2017, 66(13): 138501. doi: 10.7498/aps.66.138501
    [16] 韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清. 磁过滤器电流对非晶碳薄膜摩擦学特性影响的研究. 物理学报, 2011, 60(4): 046802. doi: 10.7498/aps.60.046802
    [17] 成泰民, 鲜于泽, 冮铁臣. 光频支声子对二维Heisenberg铁磁系统磁激发的影响. 物理学报, 2006, 55(6): 2941-2948. doi: 10.7498/aps.55.2941
    [18] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响. 物理学报, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [19] 史杭, 蔡建华. 铁磁超晶格中的电磁耦子. 物理学报, 1988, 37(5): 817-822. doi: 10.7498/aps.37.817
    [20] 陶云. 低温下铁磁和反铁磁体系的运动学相互作用. 物理学报, 1966, 22(4): 449-459. doi: 10.7498/aps.22.449
计量
  • 文章访问数:  16961
  • PDF下载量:  936
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2023-02-01
  • 上网日期:  2023-02-16
  • 刊出日期:  2023-03-05

/

返回文章
返回