搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快点火中质子的能量沉积和神光II升级装置上的质子束的产生

何民卿 张华 李明强 彭力 周沧涛

引用本文:
Citation:

快点火中质子的能量沉积和神光II升级装置上的质子束的产生

何民卿, 张华, 李明强, 彭力, 周沧涛

Proton beam energy deposition in fast ignition and production of protons on Shenguang II upgraded device

He Min-Qing, Zhang Hua, Li Ming-Qiang, Peng Li, Zhou Cang-Tao
PDF
HTML
导出引用
  • 基于神光II升级装置激光条件, 利用流体程序、粒子模拟程序和Fokker-Placnck程序, 模拟研究质子快点火中所需质子束的品质以及产生所需质子束的激光条件. 首先根据快点火靶的条件, 利用Fokker-Planck方程模拟快点火所需的质子束的能量范围, 模拟表明当背景等离子密度为300 g/cm3时, 能量为7—12 MeV的质子束适合点火; 当背景等离子体密度为400 g/cm3时, 能量为8—18 MeV的质子束适合点火. 再根据神光II升级装置实验条件研究质子束所需的激光参数, 通过利用粒子模拟程序, 结合流体程序给出的预等离子体, 分别模拟研究了加预等离子体和不加预等离子体两种情况下的质子加速, 在有预等离子体时得到的质子束最大能量约为22 MeV, 没有预等离子体时得到的质子束最大能量为17.5 MeV, 具体分析了两种情况下质子加速的物理机制, 其结果跟等离子体自由膨胀模型结果符合得很好.
    The proton beam energy deposition and the prodution of proton beams in proton fast ignition are investigated with the fluid program, partice-in-cell program and Fokker-Planck program based on the parameters of Shenguang II upgraded device. Firstly, according to the target parameters of fast ignition, the energy depositions of different energy protons are investigated. It is obtained that the higher the incident proton energy, the higher the surface density that the protons go through, accordingly the longer the proton deposition distance in the same background plasma density. On the assumption that the diameter of the compression core is 20–30 μm, and that the protons deposited in the core give the energy to the background plasma, the energy of the proton required by fast ignition is obtained by Fokker-Planck simulation. Protons with energy of 7–12 MeV are appropriate for ignition when the background plasma density is 300 g/cm3, while 8–18 MeV protons for 400 g/cm3. The background plasma temperatures are both 5 keV in the two cases. Secondly, we use particle-in-cell program to study the proton acceleration with or without preplasma which is given by fluid program with using the laser intensity $ I = 5.4 \times {10^{19}}{\text{ }}{\rm{W/c}}{{\rm{m}}^2} $ based on the parameters of Shenguang II upgraded device. The laser has 350 J of enegy, 3 ps of Gaussion pluse width and 10 µm of spot radius. The curvature of the target which is 10 µm thick copper coated with 1 µm thick hydrogen plasma, is 500 µm. The maximum proton energy obtained with preplama is 22 MeV, however the maximum proton energy obtained without preplasma is 17.5 MeV. The conversion efficiency from laser to protons is 5.12% with preplasma and 4.15% without preplasma. The conversion efficiency with preplasma is 20% higher than that without preplasma. We also study the mechanisms of the acceleration in the two situations. The freely expanding plasma model is used to explain the acceleration mechanism. The simulated electric field is smaller than that calculated by using the freely expanding plasma model, because some protons are accelerated at the time of plasma expansion, which consumes some electric field. The results of proton energy deposition show that the proton beams that are suitable for fast ignition can be obtained by the Shenguang II upgraded device.
      通信作者: 何民卿, he_minqing@iapcm.ac.cn ; 张华, zhanghua@sztu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0401100)、国家自然科学基金(批准号: 12075033, 11975055)和科学挑战专题(批准号: TZ2018005)资助的课题.
      Corresponding author: He Min-Qing, he_minqing@iapcm.ac.cn ; Zhang Hua, zhanghua@sztu.edu.cn
    • Funds: Project supported by the National Key Programme for S&T Research and Develoment (Grant No. 2016YFA0401100), the National Natural Science Foundation of China (Grant Nos. 12075033, 11975055), and the Science Challenge Project, China (Grant No. TZ2018005).
    [1]

    Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113Google Scholar

    [2]

    Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30Google Scholar

    [3]

    Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703Google Scholar

    [4]

    Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711Google Scholar

    [5]

    Davies J R 2009 Plasma Phys. Control. Fusion 51 014006Google Scholar

    [6]

    Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [9]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447Google Scholar

    [10]

    Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003Google Scholar

    [11]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [12]

    Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [13]

    Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076Google Scholar

    [14]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [15]

    Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363Google Scholar

    [16]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar

    [17]

    Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1Google Scholar

    [18]

    Key M H 2007 Phys. Plasmas 14 055502Google Scholar

    [19]

    Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440Google Scholar

    [20]

    Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098Google Scholar

    [21]

    Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017Google Scholar

    [22]

    Shmatov M L 2003 Fusion Sci. Technol. 43 456Google Scholar

    [23]

    Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061Google Scholar

    [24]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar

    [25]

    Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016Google Scholar

    [26]

    Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639Google Scholar

    [27]

    徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505Google Scholar

    Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505Google Scholar

    [28]

    Davies J R 2002 Phys. Rev. E 65 026407Google Scholar

    [29]

    Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703Google Scholar

    [30]

    Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308Google Scholar

    [31]

    Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314Google Scholar

    [32]

    Fano U 1963 Annu. Rev. Nucl. Sci. 13 1Google Scholar

    [33]

    Chang J S, Copper G 1970 J. Comput. Phys. 6 1Google Scholar

    [34]

    Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401Google Scholar

    [35]

    Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901Google Scholar

    [36]

    Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002Google Scholar

    [37]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(RGoogle Scholar

    [38]

    何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363Google Scholar

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363Google Scholar

    [39]

    何民卿, 董全力, 盛政明, 张杰 2015 物理学报 64 105202Google Scholar

    He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202Google Scholar

    [40]

    Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402Google Scholar

    [41]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414Google Scholar

    [42]

    Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040Google Scholar

    [43]

    Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701Google Scholar

    [44]

    Denavit J 1979 Phys. Fluids 22 1384Google Scholar

  • 图 1  能量损失随沉积距离的关系图(Ep为质子能量, ρs为面密度)

    Fig. 1.  Stopping power plotted as a function of the proton penetration .

    图 2  (a) 不同能量的质子束沉积距离; (b) 不同能量的质子束的沉积时间(Ep为入射质子能量, $ {\tau _{{\text{dep}}}} $为质子沉积时间)

    Fig. 2.  (a) Stopping range vs. proton energy; (b) the stopping time vs. proton energy (Ep is the proton energy and $ {\tau _{{\text{dep}}}} $ is the proton deposition time)

    图 3  初始等离子体密度分布示意图(靶的曲率半径为500 μm) (a) 没有预等离子体情况; (b) 有预等离子体情况

    Fig. 3.  Initial plasma density distribution: (a) Without preplasma; (b) with preplasma.

    图 4  (a) 二维粒子模拟得到的质子能谱图(Ep为质子能量, dN/dEp为单位能量粒子数); (b) 最高质子能随激光能量分布图(EL为入射激光能量, Ep,max为最大质子能量)

    Fig. 4.  (a) Proton energy spectrum from PIC simulation (Ep is the proton energy, dN/dE is the number of protons per unit energy); (b) the maximum proton energy vs. laser energy (EL is the laser energy, Ep,max is the maximum proton energy).

    图 5  二维粒子模拟得到的t = 500 fs时纵向电场在x方向的分布 (a) 无预等离子体情况; (b) 有预等离子体情况

    Fig. 5.  Longitudinal electrical field distribution in x direction at t = 500 fs from 2D PIC simulation: (a) Without preplasma; (b) with preplasma.

    表 1  二维粒子模拟得到的无预等离子体和有预等离子时质子束品质比较.

    Table 1.  Proton qualities with preplasma or without preplasma by 2D PIC simulations.

    转化效率/%最高质子能/MeV质子数/个 (7—18 MeV)
    无预等离子体4.25177.81×1012
    有预等离子体5.12251.01×1013
    下载: 导出CSV
  • [1]

    Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113Google Scholar

    [2]

    Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30Google Scholar

    [3]

    Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703Google Scholar

    [4]

    Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711Google Scholar

    [5]

    Davies J R 2009 Plasma Phys. Control. Fusion 51 014006Google Scholar

    [6]

    Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [9]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447Google Scholar

    [10]

    Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003Google Scholar

    [11]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [12]

    Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [13]

    Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076Google Scholar

    [14]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [15]

    Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363Google Scholar

    [16]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar

    [17]

    Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1Google Scholar

    [18]

    Key M H 2007 Phys. Plasmas 14 055502Google Scholar

    [19]

    Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440Google Scholar

    [20]

    Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098Google Scholar

    [21]

    Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017Google Scholar

    [22]

    Shmatov M L 2003 Fusion Sci. Technol. 43 456Google Scholar

    [23]

    Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061Google Scholar

    [24]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar

    [25]

    Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016Google Scholar

    [26]

    Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639Google Scholar

    [27]

    徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505Google Scholar

    Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505Google Scholar

    [28]

    Davies J R 2002 Phys. Rev. E 65 026407Google Scholar

    [29]

    Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703Google Scholar

    [30]

    Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308Google Scholar

    [31]

    Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314Google Scholar

    [32]

    Fano U 1963 Annu. Rev. Nucl. Sci. 13 1Google Scholar

    [33]

    Chang J S, Copper G 1970 J. Comput. Phys. 6 1Google Scholar

    [34]

    Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401Google Scholar

    [35]

    Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901Google Scholar

    [36]

    Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002Google Scholar

    [37]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(RGoogle Scholar

    [38]

    何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363Google Scholar

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363Google Scholar

    [39]

    何民卿, 董全力, 盛政明, 张杰 2015 物理学报 64 105202Google Scholar

    He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202Google Scholar

    [40]

    Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402Google Scholar

    [41]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414Google Scholar

    [42]

    Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040Google Scholar

    [43]

    Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701Google Scholar

    [44]

    Denavit J 1979 Phys. Fluids 22 1384Google Scholar

  • [1] 马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆. 激光加速高能质子实验研究进展及新加速方案. 物理学报, 2021, 70(8): 084102. doi: 10.7498/aps.70.20202115
    [2] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [3] 周斌, 于全芝, 胡志良, 陈亮, 张雪荧, 梁天骄. 高能质子在散裂靶中的能量沉积计算与实验验证. 物理学报, 2021, 70(5): 052401. doi: 10.7498/aps.70.20201504
    [4] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响. 物理学报, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [5] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计. 物理学报, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [6] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [7] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜. 双绞铝丝纳秒电爆炸实验研究. 物理学报, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [8] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟. 物理学报, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [9] 滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋. 激光加速质子束对电磁孤立子的照相模拟研究. 物理学报, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [10] 余金清, 周维民, 金晓林, 李斌, 赵宗清, 曹磊峰, 董克攻, 刘东晓, 范伟, 魏来, 闫永宏, 钱凤, 杨祖华, 洪伟, 谷渝秋. 鞘场加速机理中质子束的特性与其初始尺寸的关系. 物理学报, 2012, 61(17): 175202. doi: 10.7498/aps.61.175202
    [11] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [12] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [13] 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 孟立民, 王兆华, 郑君, 盛政明, 魏志义, 李英骏, 张杰. 利用激光离焦的方法优化超强激光驱动的质子加速. 物理学报, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [14] 方美华, 魏志勇, 杨 浩, 程金星. 高能铁离子在水介质中核反应过程所导致的能量沉积. 物理学报, 2008, 57(10): 6196-6201. doi: 10.7498/aps.57.6196
    [15] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [16] 施研博, 应阳君, 李金鸿. α粒子的慢化过程对D-T等离子体聚变燃烧的影响. 物理学报, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [17] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟. 物理学报, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [18] 任黎明, 陈宝钦, 谭震宇. Monte Carlo方法研究低能电子束曝光沉积能分布规律. 物理学报, 2002, 51(3): 512-518. doi: 10.7498/aps.51.512
    [19] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [20] 叶铭汉, 孙良方, 徐建铭, 金建中, 叶龙飞, 陈志诚, 陈鑑璞, 夏广昌, 余觉先, 李正武, 赵忠尧. 质子静电加速器. 物理学报, 1963, 19(1): 60-69. doi: 10.7498/aps.19.60
计量
  • 文章访问数:  3527
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-02-23
  • 上网日期:  2023-03-10
  • 刊出日期:  2023-05-05

/

返回文章
返回