搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属镜面上纳米光学天线阵列自发辐射增强与定向辐射

苏宇航 张炼 陶灿 王宁 马平准 钟莹 刘海涛

引用本文:
Citation:

金属镜面上纳米光学天线阵列自发辐射增强与定向辐射

苏宇航, 张炼, 陶灿, 王宁, 马平准, 钟莹, 刘海涛

Spontaneous emission enhancement and directional emission by an optical nanonatenna array on a metallic mirror

Su Yu-Hang, Zhang Lian, Tao Can, Wang Ning, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao
PDF
HTML
导出引用
  • 本文提出一种金属镜面上纳米光学天线阵列结构, 天线采用金纳米立方体, 单个点辐射源位于天线和金镜面之间的纳米间隙内. 天线和金镜面之间的纳米间隙支持间隙表面等离激元, 能够增强自发辐射速率; 同时, 周期排布的纳米天线支持表面晶格共振(surface lattice resonance, SLR), 通过适当设计阵列周期, 可实现沿垂直于基底方向的远场定向辐射. 本文结合阵列扫描法(array scanning method, ASM)和全波严格数值方法, 计算了辐射源的自发辐射速率. 对于远场辐射强度角分布的计算, 本文给出了互易定理方法的严格表述和证明过程, 该证明过程不同于已有文献中的证明过程, 对于无限大周期结构具有更严格的适用性, 或者具有更低的计算量. 本文提出的天线结构和设计方法可用于指导设计高速、高亮度、定向辐射光源.
    Optical nanoantennas support surface plasmon polariton (SPP) with a confinement of light breaking through the diffraction limit, and thereby achieving an enhancement and regulation of electromagnetic field on a deep-subwavelength scale. In this paper, a periodic array of optical nanoantennas on a metallic mirror is proposed, where the antennas are gold nanocubes forming a two-dimensional periodic array, and a single point emission source is located in the nanogap between the antenna of gold nanocube and the gold mirror. The nanogap between the antenna and mirror can support gap surface plasmon, which results in an enhanced spontaneous emission rate. Meanwhile, the periodic array of nanoantennas can support the surface lattice resonance (SLR), which can achieve directional far-field radiation perpendicular to the substrate or in a specified direction by properly designing the array period. To design the antenna that can simultaneously achieve an enhancement of spontaneous emission rate and a directional radiation of far field, the calculation of the radiation field of a single point source in a periodic structure is transformed into the calculation of the radiation fields of a set of pseudoperiodic point-source arrays by combining the array scanning method (ASM) and full-wave rigorous numerical method, thus giving the spontaneous emission rate of the emitter and the near-field distribution of the antenna. Concerning the calculation of the angular distribution of far-field radiation intensity, we start from the Maxwell’s equations and provide a rigorous formulation and proof of the reciprocity-theorem method. This proof is different from those reported in existing literature and has a more rigorous applicability for infinite-extent periodic structures or has a lower amount of computational work. Based on the reciprocity-theorem method, the antenna parameters are designed so that the enhancement factor of far-field radiation intensity reaches a maximum value of 2756 in the direction perpendicular to the substrate, and simultaneously, the enhancement factors of total spontaneous emission rate and far-field spontaneous emission rate of the point source reach 1097 and 55.50, respectively. The proposed antenna has a simple structure that is easy to design and fabricate, and the proposed design method is intuitive and easy to implement, which can be used to guide the design of high-speed, high-brightness and directional-radiation light sources.
      通信作者: 刘海涛, liuht@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075104, 61775105)资助的课题.
      Corresponding author: Liu Hai-Tao, liuht@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075104, 61775105).
    [1]

    Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607Google Scholar

    [2]

    Aizpurua J, Bryant G W, Richter L J, García de Abajo F J, Kelley B K, Mallouk T 2005 Phys. Rev. B 71 235420Google Scholar

    [3]

    Pelton M 2015 Nat. Photonics 9 427Google Scholar

    [4]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [6]

    Traverso A J, Huang J, Peyronel T, Yang G, Tiecke T G, Mikkelsen M H 2021 Optica 8 202Google Scholar

    [7]

    Rycenga M, Xia X, Moran C H, Zhou F, Qin D, Li Z Y, Xia Y 2011 Angew. Chem. Int. Ed. 50 5473Google Scholar

    [8]

    Xin H, Namgung B, Lee L P 2018 Nat. Rev. Mater. 3 228Google Scholar

    [9]

    Gubin M Yu, Shesterikov A V, Prokhorov A V, Volkov V S 2020 Laser Photonics Rev. 14 2000237Google Scholar

    [10]

    Shan H, Liu Z, Wang X, Lin F, Liu Z, Shen B, Lou J, Zhu X, Ajayan P M, Fang Z 2020 Laser Photonics Rev. 14 2000233Google Scholar

    [11]

    Tyagi D, Chen T, Huang C 2020 Laser Photonics Rev. 14 2000076Google Scholar

    [12]

    Wang J, Jia X, Guan Y, Ren K, Yu H, Wang Z, Qu S, Yang Q, Lin J, Wang Z, Jin P 2021 Laser Photonics Rev. 15 2000512Google Scholar

    [13]

    Lumdee C, Yun B, Kik P G 2014 ACS Photonics 1 1224Google Scholar

    [14]

    Baumberg J J, Aizpurua J, Mikkelsen M H, Smith D R 2019 Nat. Mater. 18 668Google Scholar

    [15]

    Purcell E M 1946 Phys. Rev. 69 674Google Scholar

    [16]

    Huang S, Ming T, Lin Y, Ling X, Ruan Q, Palacios T, Wang J, Dresselhaus M, Kong J 2016 Small 12 5190Google Scholar

    [17]

    Novotny L, van Hulst N 2011 Nat. Photonics 5 83Google Scholar

    [18]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [19]

    Ma R M, Oulton R F, Sorger V J, Zhang X 2013 Laser Photonics Rev. 7 1Google Scholar

    [20]

    Lakowicz J r., Fu Y 2009 Laser Photonics Rev. 3 221Google Scholar

    [21]

    Agio M 2012 Nanoscale 4 692Google Scholar

    [22]

    Tsakmakidis K L, Boyd R W, Yablonovitch E, Zhang X 2016 Opt. Express 24 17916Google Scholar

    [23]

    Li L, Hutter T, Steiner U, Mahajan S 2013 Analyst 138 4574Google Scholar

    [24]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668Google Scholar

    [25]

    Lozano G, Louwers D J, Rodríguez S R, Murai S, Jansen O T, Verschuuren M A, Gómez Rivas J 2013 Light-Sci. Appl. 2 e66Google Scholar

    [26]

    Lozano G, Grzela G, Verschuuren M A, Ramezani M, Rivas J G 2014 Nanoscale 6 9223Google Scholar

    [27]

    Vaskin A, Bohn J, Chong K E, Bucher T, Zilk M, Choi D Y, Neshev D N, Kivshar Y S, Pertsch T, Staude I 2018 ACS Photonics 5 1359Google Scholar

    [28]

    Liu S, Vaskin A, Addamane S, Leung B, Tsai M C, Yang Y, Vabishchevich P P, Keeler G A, Wang G, He X, Kim Y, Hartmann N F, Htoon H, Doorn S K, Zilk M, Pertsch T, Balakrishnan G, Sinclair M B, Staude I, Brener I 2018 Nano Lett. 18 6906Google Scholar

    [29]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmä P 2014 Nano Lett. 14 1721Google Scholar

    [30]

    van Lare M, Lenzmann F, Verschuuren M A, Polman A 2012 Appl. Phys. Lett. 101 221110Google Scholar

    [31]

    Ferry V E, Verschuuren M A, Li H B T, Verhagen E, Walters R J, Schropp R E I, Atwater H A, Polman A 2010 Opt. Express 18 A237Google Scholar

    [32]

    Lozano G, Rodriguez S R, Verschuuren M A, Gómez Rivas J 2016 Light-Sci. Appl 5 e16080Google Scholar

    [33]

    Capolino F, Jackson D R, Wilton D R, Felsen L B 2007 IEEE Trans. Antennas Propag. 55 1644Google Scholar

    [34]

    Kahl M, Voges E 2000 Phys. Rev. B 61 14078Google Scholar

    [35]

    Janssen O T A, Wachters A J H, Urbach H P 2010 Opt. Express 18 24522Google Scholar

    [36]

    Zhang S, Martins E R, Diyaf A G, Wilson J I B, Turnbull G A, Samuel I D W 2015 Synthetic Met. 205 127Google Scholar

    [37]

    Jia H, Liu H, Zhong Y 2015 Sci. Rep. 5 8456Google Scholar

    [38]

    Lecamp G, Hugonin J P, Lalanne P 2007 Opt. Express 15 11042Google Scholar

    [39]

    Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7 th Ed. ) (Cambridge: Cambridge University)

    [40]

    Wang N, Zhong Y, Liu H 2022 Opt. Express 30 12797Google Scholar

    [41]

    Chen Y, Zhang Y, Femius Koenderink A 2017 Opt. Express 25 21358Google Scholar

    [42]

    Palik E D 1998 Handbook of Optical Constants of Solids (Sydney: Academic Press)

    [43]

    de Boer D K G, Verschuuren M A, Guo K, Koenderink A F, Rivas J G, Rodriguez S R K 2016 Opt. Express 24 A388Google Scholar

    [44]

    Aouani H, Mahboub O, Bonod N, Devaux E, Popov E, Rigneault H, Ebbesen T W, Wenger J 2011 Nano Lett. 11 637Google Scholar

    [45]

    Shegai T, Johansson P, Langhammer C, Käll M 2012 Nano Lett. 12 2464Google Scholar

    [46]

    Lechago S, García-Meca C, Griol A, Kovylina M, Bellieres L, Martí J 2019 ACS Photonics 6 1094Google Scholar

    [47]

    Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M, Giessen H 2014 Nat. Commun. 5 4354Google Scholar

    [48]

    Li L 1997 J. Opt. Soc. Am. A 14 2758Google Scholar

    [49]

    Liu H T 2010 DIF CODE for Modeling Light Diffraction in Nanostructures (Tianjin: Nankai University)

    [50]

    Zhang X, Liu H, Zhong Y 2013 Opt. Express 21 24139Google Scholar

    [51]

    Vecchi G, Giannini V, Gómez Rivas J 2009 Phys. Rev. Lett. 102 146807Google Scholar

    [52]

    Koenderink A F 2017 ACS Photonics 4 710Google Scholar

    [53]

    Glass A M, Liao P F, Bergman J G, Olson D H 1980 Opt. Lett. 5 368Google Scholar

    [54]

    Hoang T B, Akselrod G M, Argyropoulos C, Huang J, Smith D R, Mikkelsen M H 2015 Nat. Commun. 6 7788Google Scholar

    [55]

    Tam F, Goodrich G P, Johnson B R, Halas N J 2007 Nano Lett. 7 496Google Scholar

    [56]

    Wang H, Lin Y, Ma P, Zhong Y, Liu H 2019 J. Mater. Chem. C 7 13526Google Scholar

    [57]

    Muskens O L, Giannini V, Sánchez-Gil J A, Gómez Rivas J 2007 Nano Lett. 7 2871Google Scholar

    [58]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotechnol. 8 506Google Scholar

    [59]

    Sreekanth K V, Krishna K H, De Luca A, Strangi G 2014 Sci. Rep. 4 6340Google Scholar

  • 图 1  周期结构中单个点电流源远场辐射强度角分布互易定理计算方法示意图. 图中所示为金属镜面上金属纳米天线(金纳米立方体)阵列结构 (a) 原问题示意图, 点源位于周期结构中, 辐射出上行远场平面波模式; (b) 互易问题示意图, 下行远场平面波模式激励周期结构. 图(a)和图(b)的电磁场分别表示为ψ1ψ2; (c) 结构侧视图, 自下而上依次为半无限金基底、PMMA纳米间隙(厚度为h)、金纳米立方体天线(边长为D)阵列, 沿x, y方向阵列周期分别为a, b

    Fig. 1.  Schematic diagrams of the numerical method by using the reciprocity theorem for calculating the angular distribution of far-field radiation intensity of a single electric-current point source in a periodic structure. The depicted structure is a periodic array of metallic nanoantennas (gold nanocubes) on a metallic mirror: (a) The original problem where a point source is located in a periodic structure and radiates up-going far-field plane-wave modes; (b) the reciprocity problem where a down-going far-field plane-wave mode excites the periodic structure. The electromagnetic fields of Figure (a) and Figure (b) are denoted by ψ1 and ψ2, respectively; (c) side view of the structure. From bottom to top, the structure is composed of a semi-infinite gold substrate, a PMMA nanogap (with a thickness h) and a gold-nanocube antenna array (with a side length D, and periods a and b along x and y directions, respectively)

    图 2  ASM示意图 (a) 周期结构中(沿x, y方向周期分别为a, b)单个点电流源J(红色星号)的辐射问题; (b1)—(b3) 周期结构中点源赝周期阵列J(对应不同的kx, ky, 绿色星号)的辐射问题. 利用ASM, 图(a)中辐射场可表达为图(b)中辐射场的线性叠加

    Fig. 2.  Schematic diagram of ASM: (a) Radiation problem of a single electric-current point source J (red asterisk) in a periodic structure (the periods along the x and y directions being a and b, respectively); (b1)–(b3) radiation problem of pseudoperiodic point-source arrays J (corresponding to different kx and ky, green asterisks) in the periodic structure. By using the ASM, the radiation field in Figure (a) can be expressed as a linear superposition of the radiation fields in Figure (b).

    图 3  (a) NPoM天线周期阵列的0级平面波反射率R(左轴, 实线)、电场增强因子FE(右轴, 虚线)随阵列周期a变化的曲线, 不同颜色对应不同的天线尺寸D; (b1), (b2) y = 0和z = h/2截面上电场|Ez|的分布(用入射平面波电场|Einc|作了归一化), 对应D = 200 nm, a = aSLR=989 nm

    Fig. 3.  (a) Reflectance R (left axis, solid curves) of the zeroth-order plane wave and electric-field enhancement factor FE (right axis, dashed curves) plotted as functions of the antenna array period a, where different colors correspond to different antenna sizes D; (b1), (b2) distributions of |Ez| (normalized by the electric field |Einc| of the incident plane wave) on the cross-sections y = 0 and z = h/2 for D = 200 nm and a = aSLR = 989 nm.

    图 4  (a1)—(a6) NPoM天线周期阵列中点电流源的远场辐射强度角分布P(θ, ϕ), 依次对应阵列周期a = 600, 700, 800, 900, 989, 1100 nm. 计算取天线边长D = 200 nm, 辐射波长λ = 1 μm. 设点源沿z方向偏振, 位于天线纳米间隙内rs = (D/2–10 nm, 0, h/2)位置; (b1)—(b2) TE, TM偏振零级平面波反射率R(θ, ϕ), 对应阵列周期a = aSLR = 989 nm. 图中颜色代表1–R(θ, ϕ)的数值, θ, ϕ分别为入射平面波波矢(kx,0, ky,0, –kz,0,0) = k0na(sinθcosϕ, sinθsinϕ, –cosθ)的极角、方位角. 图(a)和图(b)中显示了黑色圆、白色虚线位置极角θ、方位角ϕ的数值; (c) a = aSLR时RA的位置, 由方程(19)给出(标出了(m, n)的数值)

    Fig. 4.  (a1)—(a6) Far-field radiation-intensity angular distributions P(θ, ϕ) of an electric-current point source in the periodic NPoM antenna array with a period a = 600, 700, 800, 900, 989, and 1100 nm, respectively. The side length D of the antenna is 200 nm and the radiation wavelength λ is 1 μm. The point source is polarized along the z direction and located at rs = (D/2–10 nm, 0, h/2) in the nanogap. (b1), (b2) Reflectance R(θ, ϕ) of the zeroth-order plane wave under TE and TM polarizations, respectively, which is obtained for array period a = aSLR = 989 nm. The θ and ϕ are respectively the polar angle and azimuth angle of the incident plane-wave wave vector (kx,0, ky,0, –kz,0,0) = k0na(sinθcosϕ, sinθsinϕ, –cosθ). The color in Figure (b1) and Figure (b2) represents the value of 1–R(θ, ϕ). Several typical values of θ and ϕ respectively at the black circles and white dashed lines in Figure (a) and Figure (b) are shown. (c) Positions of RA for a = aSLR given by Eq. (19) [with the values of (m, n) being marked].

    图 5  方程(27a)给出的Am(蓝色圆圈) (a)—(d) 依次取P=10, 15, 20, 25. 两条竖直红色虚线显示了赝周期点源阵列中, 位于中央周期之外的点源抵消为0的范围–(P–1) ≤ mP–1

    Fig. 5.  The Am given by Eq. (27a) (blue circles): (a)–(d) For P = 10, 15, 20, 25, respectively. The two vertical red-dashed lines show the range –(P–1) ≤ mP–1, where the point sources contained in the pseudoperiodic point-source arrays and out of the central period cancel to be null.

    图 6  点源辐射电场在天线阵列中央周期(–a/2 ≤ xa/2, –b/2 ≤ yb/2)范围内的分布(用Γvac作了归一化). 结果采用ASM计算得到, 天线参数与图4(a5)相同 (a), (b) 对应点源所在截面y = 0, z = h/2. 从左到右分别显示了电场分量|Ex|, |Ey|, |Ez|. 白色虚线显示了界面位置

    Fig. 6.  Distributions of electric field (normalized by Γvac) in the central period (–a/2 ≤ xa/2, –b/2 ≤ yb/2) of the antenna array radiated by a point source. The results are calculated by the ASM with the same antenna parameters as those in Fig. 4(a5): (a), (b) The field distributions on the cross sections y = 0 and z = h/2 where the point is located. The electric field components |Ex|, |Ey| and |Ez| are displayed from left to right. The white dashed lines show the interface positions.

    表 1  采用不同的采样点数P = Q时, ASM计算得到的γtotγrad

    Table 1.  γtot and γrad obtained with the ASM for various number P = Q of sampling points.

    P = Q10204080
    γtot1095.661098.051097.471098.23
    γrad415.3154.0455.5055.81
    下载: 导出CSV
  • [1]

    Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607Google Scholar

    [2]

    Aizpurua J, Bryant G W, Richter L J, García de Abajo F J, Kelley B K, Mallouk T 2005 Phys. Rev. B 71 235420Google Scholar

    [3]

    Pelton M 2015 Nat. Photonics 9 427Google Scholar

    [4]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [6]

    Traverso A J, Huang J, Peyronel T, Yang G, Tiecke T G, Mikkelsen M H 2021 Optica 8 202Google Scholar

    [7]

    Rycenga M, Xia X, Moran C H, Zhou F, Qin D, Li Z Y, Xia Y 2011 Angew. Chem. Int. Ed. 50 5473Google Scholar

    [8]

    Xin H, Namgung B, Lee L P 2018 Nat. Rev. Mater. 3 228Google Scholar

    [9]

    Gubin M Yu, Shesterikov A V, Prokhorov A V, Volkov V S 2020 Laser Photonics Rev. 14 2000237Google Scholar

    [10]

    Shan H, Liu Z, Wang X, Lin F, Liu Z, Shen B, Lou J, Zhu X, Ajayan P M, Fang Z 2020 Laser Photonics Rev. 14 2000233Google Scholar

    [11]

    Tyagi D, Chen T, Huang C 2020 Laser Photonics Rev. 14 2000076Google Scholar

    [12]

    Wang J, Jia X, Guan Y, Ren K, Yu H, Wang Z, Qu S, Yang Q, Lin J, Wang Z, Jin P 2021 Laser Photonics Rev. 15 2000512Google Scholar

    [13]

    Lumdee C, Yun B, Kik P G 2014 ACS Photonics 1 1224Google Scholar

    [14]

    Baumberg J J, Aizpurua J, Mikkelsen M H, Smith D R 2019 Nat. Mater. 18 668Google Scholar

    [15]

    Purcell E M 1946 Phys. Rev. 69 674Google Scholar

    [16]

    Huang S, Ming T, Lin Y, Ling X, Ruan Q, Palacios T, Wang J, Dresselhaus M, Kong J 2016 Small 12 5190Google Scholar

    [17]

    Novotny L, van Hulst N 2011 Nat. Photonics 5 83Google Scholar

    [18]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [19]

    Ma R M, Oulton R F, Sorger V J, Zhang X 2013 Laser Photonics Rev. 7 1Google Scholar

    [20]

    Lakowicz J r., Fu Y 2009 Laser Photonics Rev. 3 221Google Scholar

    [21]

    Agio M 2012 Nanoscale 4 692Google Scholar

    [22]

    Tsakmakidis K L, Boyd R W, Yablonovitch E, Zhang X 2016 Opt. Express 24 17916Google Scholar

    [23]

    Li L, Hutter T, Steiner U, Mahajan S 2013 Analyst 138 4574Google Scholar

    [24]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668Google Scholar

    [25]

    Lozano G, Louwers D J, Rodríguez S R, Murai S, Jansen O T, Verschuuren M A, Gómez Rivas J 2013 Light-Sci. Appl. 2 e66Google Scholar

    [26]

    Lozano G, Grzela G, Verschuuren M A, Ramezani M, Rivas J G 2014 Nanoscale 6 9223Google Scholar

    [27]

    Vaskin A, Bohn J, Chong K E, Bucher T, Zilk M, Choi D Y, Neshev D N, Kivshar Y S, Pertsch T, Staude I 2018 ACS Photonics 5 1359Google Scholar

    [28]

    Liu S, Vaskin A, Addamane S, Leung B, Tsai M C, Yang Y, Vabishchevich P P, Keeler G A, Wang G, He X, Kim Y, Hartmann N F, Htoon H, Doorn S K, Zilk M, Pertsch T, Balakrishnan G, Sinclair M B, Staude I, Brener I 2018 Nano Lett. 18 6906Google Scholar

    [29]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmä P 2014 Nano Lett. 14 1721Google Scholar

    [30]

    van Lare M, Lenzmann F, Verschuuren M A, Polman A 2012 Appl. Phys. Lett. 101 221110Google Scholar

    [31]

    Ferry V E, Verschuuren M A, Li H B T, Verhagen E, Walters R J, Schropp R E I, Atwater H A, Polman A 2010 Opt. Express 18 A237Google Scholar

    [32]

    Lozano G, Rodriguez S R, Verschuuren M A, Gómez Rivas J 2016 Light-Sci. Appl 5 e16080Google Scholar

    [33]

    Capolino F, Jackson D R, Wilton D R, Felsen L B 2007 IEEE Trans. Antennas Propag. 55 1644Google Scholar

    [34]

    Kahl M, Voges E 2000 Phys. Rev. B 61 14078Google Scholar

    [35]

    Janssen O T A, Wachters A J H, Urbach H P 2010 Opt. Express 18 24522Google Scholar

    [36]

    Zhang S, Martins E R, Diyaf A G, Wilson J I B, Turnbull G A, Samuel I D W 2015 Synthetic Met. 205 127Google Scholar

    [37]

    Jia H, Liu H, Zhong Y 2015 Sci. Rep. 5 8456Google Scholar

    [38]

    Lecamp G, Hugonin J P, Lalanne P 2007 Opt. Express 15 11042Google Scholar

    [39]

    Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7 th Ed. ) (Cambridge: Cambridge University)

    [40]

    Wang N, Zhong Y, Liu H 2022 Opt. Express 30 12797Google Scholar

    [41]

    Chen Y, Zhang Y, Femius Koenderink A 2017 Opt. Express 25 21358Google Scholar

    [42]

    Palik E D 1998 Handbook of Optical Constants of Solids (Sydney: Academic Press)

    [43]

    de Boer D K G, Verschuuren M A, Guo K, Koenderink A F, Rivas J G, Rodriguez S R K 2016 Opt. Express 24 A388Google Scholar

    [44]

    Aouani H, Mahboub O, Bonod N, Devaux E, Popov E, Rigneault H, Ebbesen T W, Wenger J 2011 Nano Lett. 11 637Google Scholar

    [45]

    Shegai T, Johansson P, Langhammer C, Käll M 2012 Nano Lett. 12 2464Google Scholar

    [46]

    Lechago S, García-Meca C, Griol A, Kovylina M, Bellieres L, Martí J 2019 ACS Photonics 6 1094Google Scholar

    [47]

    Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M, Giessen H 2014 Nat. Commun. 5 4354Google Scholar

    [48]

    Li L 1997 J. Opt. Soc. Am. A 14 2758Google Scholar

    [49]

    Liu H T 2010 DIF CODE for Modeling Light Diffraction in Nanostructures (Tianjin: Nankai University)

    [50]

    Zhang X, Liu H, Zhong Y 2013 Opt. Express 21 24139Google Scholar

    [51]

    Vecchi G, Giannini V, Gómez Rivas J 2009 Phys. Rev. Lett. 102 146807Google Scholar

    [52]

    Koenderink A F 2017 ACS Photonics 4 710Google Scholar

    [53]

    Glass A M, Liao P F, Bergman J G, Olson D H 1980 Opt. Lett. 5 368Google Scholar

    [54]

    Hoang T B, Akselrod G M, Argyropoulos C, Huang J, Smith D R, Mikkelsen M H 2015 Nat. Commun. 6 7788Google Scholar

    [55]

    Tam F, Goodrich G P, Johnson B R, Halas N J 2007 Nano Lett. 7 496Google Scholar

    [56]

    Wang H, Lin Y, Ma P, Zhong Y, Liu H 2019 J. Mater. Chem. C 7 13526Google Scholar

    [57]

    Muskens O L, Giannini V, Sánchez-Gil J A, Gómez Rivas J 2007 Nano Lett. 7 2871Google Scholar

    [58]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotechnol. 8 506Google Scholar

    [59]

    Sreekanth K V, Krishna K H, De Luca A, Strangi G 2014 Sci. Rep. 4 6340Google Scholar

  • [1] 刘国强, 刘婧. 利用电磁场动量互易定理导出惠更斯原理. 物理学报, 2022, 71(14): 140301. doi: 10.7498/aps.71.20212334
    [2] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [3] 郭付周, 陈智辉, 冯光, 王晓伟, 费宏明, 孙非, 杨毅彪. 电介质微球和金属平面纳米层增强荧光远场定向发射. 物理学报, 2022, 71(17): 176801. doi: 10.7498/aps.71.20220605
    [4] 苏玉凤, 彭金璋, 杨红, 黄勇刚. 金属纳米柱的端面修饰对自发辐射增强特性的影响. 物理学报, 2022, 71(16): 166802. doi: 10.7498/aps.71.20220439
    [5] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [6] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [7] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [8] 李元和, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211863
    [9] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性. 物理学报, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [10] 巴诺, 王磊, 王海华, 李东飞, 王丹, 严立云. 基于自发辐射相干实现光学前驱动场. 物理学报, 2016, 65(10): 104201. doi: 10.7498/aps.65.104201
    [11] 秦黎, 李泽亚, 许静平, 张利伟, 羊亚平. 磁单负材料板附近的原子的自发辐射场分布. 物理学报, 2015, 64(1): 014206. doi: 10.7498/aps.64.014206
    [12] 李浩珍, 谢双媛, 许静平, 羊亚平. 结构库中二能级原子与自发辐射场间的纠缠演化. 物理学报, 2014, 63(12): 124201. doi: 10.7498/aps.63.124201
    [13] 齐有政, 黄玲, 张建国, 方广有. 层状介质上时空展源瞬变电磁响应的计算方法研究. 物理学报, 2013, 62(23): 234201. doi: 10.7498/aps.62.234201
    [14] 葛德彪, 魏兵. 互易定理计算分层半空间上方任意取向偶极子的远区场. 物理学报, 2012, 61(5): 050301. doi: 10.7498/aps.61.050301
    [15] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [16] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制. 物理学报, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [17] 袁 石, 高锦岳. V模型中相干场位相对原子自发辐射的影响. 物理学报, 2000, 49(6): 1081-1085. doi: 10.7498/aps.49.1081
    [18] 姚关华, 徐至展, 屈卫星. 强场自电离中自发辐射谱的功率增宽. 物理学报, 1990, 39(1): 30-34. doi: 10.7498/aps.39.30
    [19] 刘盛纲, 孙雁. 渡越辐射自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
    [20] 邓从豪. 自发辐射的线宽与原子能级移位. 物理学报, 1979, 28(3): 383-392. doi: 10.7498/aps.28.383
计量
  • 文章访问数:  5367
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-01-05
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回