搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究

金淼 白静 徐佳鑫 姜鑫珺 章羽 刘新 赵骧 左良

引用本文:
Citation:

Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究

金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良

Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy

Jin Miao, Bai Jing, Xu Jia-Xin, Jiang Xin-Jun, Zhang Yu, Liu Xin, Zhao Xiang, Zuo Liang
PDF
HTML
导出引用
  • Ni-Mn-Ti基全d族Heusler合金因具有良好的力学性能和弹热效应而成为金属功能材料领域的研究热点, 然而此类合金具有临界应力和滞后较大的问题限制了其实际应用. 有研究学者发现Ni-Mn基合金掺杂Fe不仅可以降低相变滞后, 还可以大幅提高合金力学性能. 鉴于此, 本文采用第一性原理计算系统地研究了Fe掺杂对Ni50–xMn37.5Ti12.5Fex(x = 3.125, 6.25, 9.375)全d族Heusler合金的相稳定性、马氏体相变和磁性能的影响. 结果表明随着Fe掺杂量的增多, 奥氏体的晶格常数逐渐减小; 相稳定性随着Fe掺杂量的增加而逐渐降低, 但在不同成分下, 马氏体始终比奥氏体更稳定, 表明合金可以发生马氏体相变. 合金的奥氏体相为铁磁性, 磁矩主要由Mn原子提供, 而马氏体相由于正常占位的Mn(MnMn)原子与占据Ti位的富余Mn(MnTi)原子的磁矩反平行排列而表现为反铁磁性. Fe取代Ni使Ni50–xMn37.5Ti12.5Fex合金系奥氏体和马氏体之间的能量差ΔE、电子浓度e/a和电子密度n都呈现减小趋势, 表明合金的马氏体相变温度随着Fe原子掺杂量的增多而下降. 本文旨在为新型Ni-Mn-Ti-Fe合金的成分设计和性能优化提供指导.
    Ni-Mn-Ti-based all-d-metal Heusler alloys have become a hot research topic in the field of metal functional materials due to their excellent mechanical properties and elastocaloric effect. However, the relatively large critical stress and transition hysteresis limit its practical applications. Some researchers have found that doping Fe in Ni-Mn-based alloys can not only reduce hysteresis, but also greatly improve the mechanical properties of alloys. Based on this, the effects of Fe doping on phase stability, martensitic transformation and magnetic properties of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) Heusler alloys are systematically studied by first principles calculation. The corresponding magnetic states of the austenite and martensite of the alloy systems are determined according to the results of the formation energy. The variations of the lattice constants and the phase stability of the austenite and martensite with the increase of Fe content in the alloy systems are revealed, and the associated mechanism is elucidated. The atomic and total magnetic moments of the austenite and martensite in the Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) systems are calculated. Based on the results of electronic structure, the essential reasons for the magnetic state changes of the alloys are further explained.In the Ni50–xMn37.5Ti12.5Fex alloy system, the lattice constant of austenite decreases gradually with the increase of Fe doping amount. The stability of austenite phase and martensite phase decrease with the increase of Fe doping amount. Under the different compositions, the formation energy of martensite is always lower than that of austenite, indicating that the alloy can undergo martensite transformation. The energy difference ΔE, electron concentration e/a and density of electrons n of the alloy show a decreasing trend, indicating that the driving force of martensitic transformation decreases, and the corresponding martensitic transformation temperature decreases with the increase of Fe atom doping.The austenite of the alloy is ferromagnetic and the martensite is antiferromagnetic. After the martensitic transformation, the distance between Mn-Mn atoms decreases, and the magnetic moments of MnMn and MnTi atoms are arranged in antiparallel manner, resulting in the total magnetic moments being almost zero. The magnetic properties of the two phases are little affected by the amount of Fe atom doping. The peak density of electronic states in the Fermi surface of martensite phase is lower than that of austenite phase, indicating that martensite phase has a more stable electronic structure than austenite phase. During the transition from austenite to martensite, there is a Jahn-Teller splitting effect at the peak of the down-spin density of states near the Fermi surface. The aim of this paper is to provide guidance for designing the composition design and optimizing the property of the Ni-Mn-Ti-Fe alloy.
      通信作者: 白静, baijing@neuq.edu.cn
    • 基金项目: 国家自然科学基金(批准号: No.51771044)、中央高校基本科研业务费专项资金(批准号: No.N2223025)和河北省电介质与电解质功能材料重点实验室绩效补贴基金(批准号: No.22567627H)资助的课题.
      Corresponding author: Bai Jing, baijing@neuq.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51771044), the Fundamental Research Funds for the Central Universities (Grant No. N2223025), and the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material of Hebei Province, China (Grant No. 22567627H).
    [1]

    Kainuma R, Oikawa K, Ito W, Sutou Y, Kanomata T, Ishida K 2008 J. Mater. Chem. 18 1837Google Scholar

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 7079

    [3]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507Google Scholar

    [4]

    Otsuka K, Shimizu K, Cornelis I, Wayman C M 1972 Scr. Metall. 6 5

    [5]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [6]

    Pathak A K, Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 90 262504Google Scholar

    [7]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J, Aksoy S, Acet M 2010 Nat. Mater. 9 478Google Scholar

    [8]

    Huang Y J, Hu Q D, Bruno N M, Chen J, Karaman I, Ross Jr J H, Li J G 2015 Scr. Mater. 105 42Google Scholar

    [9]

    Xiao F, Fukuda T, Jin X, Liu J, Kakeshita T 2018 Phys. Status Solidi B 255 1700246Google Scholar

    [10]

    Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X, Wang Y 2019 Phys. Rev. Lett. 122 255703Google Scholar

    [11]

    Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X 2019 Intermetallics 110 106472Google Scholar

    [12]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923Google Scholar

    [13]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505Google Scholar

    [14]

    Huang L, Cong D Y, Suo H L, Wang Y D 2014 Appl. Phys. Lett. 104 132407Google Scholar

    [15]

    Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Appl. Phys. Lett. 107 022406Google Scholar

    [16]

    Li G J, Liu E K, Wu G H 2022 J. Alloys Compd. 923 166369Google Scholar

    [17]

    Wu M X, Zhou F, Khenata R, Kuang M Q, Wang X T 2021 Front. Chem. 8 546947

    [18]

    Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2016 Appl. Phys. Lett. 109 071904Google Scholar

    [19]

    Zeng Q Q, Shen J L, Zhang H N, Chen J, Ding B, Xi X X, Liu E K, Wang W H, Wu G H 2019 J. Phys. Condens. Matter 31 425401Google Scholar

    [20]

    Guan Z Q, Bai J, Gu J L, Liang X Z, Liu D, Jiang X J, Huang R K, Zhang Y D, Esling L D, Zhao X, Zuo L 2021 J. Mater. Sci. Technol. 68 103Google Scholar

    [21]

    Liu S, Xuan H, Cao T, Wang L, Xie Z, Liang X, Li H, Feng L, Chen F, Han P 2019 Phys. Status Solidi A 216 1900563Google Scholar

    [22]

    Taubel A, Beckmann B, Pfeuffer L, Fortunato N, Scheibel F, Ener S, Gottschall T, Skokov K P, Zhang H, Gutfleisch O 2020 Acta Mater. 201 425Google Scholar

    [23]

    Li S H, Cong D Y, Xiong W X, Chen Z, Zhang X, Nie Z, Li S, Li R, Wang Y, Cao Y 2021 ACS Appl. Mater. Interfaces 13 31870Google Scholar

    [24]

    Chang L C, Read T A 1951 J. Met. 1989 3 47

    [25]

    Buehler W J, Gilfrich J V, Wiley R C 1963 J. Appl. Phys. 34 1475Google Scholar

    [26]

    Liu X, Bai J, Sun S D, Xu J X, Jiang X J, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 J. Appl. Phys. 132 095101Google Scholar

    [27]

    Liu K, Ma S C, Ma C C, Han X Q, Yu K, Yang S, Zhang Z S, Song Y, Luo X H, Chen C C, Rehman S U, Zhong Z C 2019 J. Alloys Compd. 790 78Google Scholar

    [28]

    Qi H X, Bai J, Xu J X, Sun S D, Liu X, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 Mater. Today Commun. 33 104725Google Scholar

    [29]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Kresse G, Hafner J 1994 J. Phys. Condens. Matter. 6 8245Google Scholar

    [31]

    Froyen S 1989 Phys. Rev. B 39 3168Google Scholar

    [32]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904Google Scholar

    [33]

    Kaufmann S, Rößler U, Heczko O, Wuttig M, Buschbeck J, Schultz L, Fahler S 2010 Phys. Rev. Lett. 104 145702Google Scholar

    [34]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903Google Scholar

    [35]

    Chen X Q, Yang F J, Lu X, Qin Z X 2007 Phys. Status Solidi B 244 1047Google Scholar

    [36]

    Kundu A, Ghosh S, Ghosh S 2017 Phys. Rev. B 96 174107Google Scholar

    [37]

    Biochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [38]

    Xiao H B, Yang C P, Wang R L, Marchenkov V V, Bärner K 2012 J. Appl. Phys. 112 123723Google Scholar

    [39]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401Google Scholar

  • 图 1  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系奥氏体相的原子占位方式 (a) x = 3.125; (b1) x = 6.25, 聚集分布; (b2) x = 6.25, 离散分布; (c) x = 9.375

    Fig. 1.  Atomic occupancy of austenitic phase in Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) x = 3.125; (b1) x = 6.25, aggregated distribution; (b2) x = 6.25, distant distribution; (c) x = 9.375.

    图 2  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系在铁磁性和反铁磁性下的形成能 (a) 奥氏体相; (b) 马氏体相

    Fig. 2.  The Ef for Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys in ferromagnetic and antiferromagnetic: (a) Austenite; (b) martensite.

    图 3  (a) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的形成能随Fe掺杂含量的变化趋势; (b) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系奥氏体和马氏体的能量差ΔE和电子浓度e/a随Fe掺杂量的变化

    Fig. 3.  (a) Ef of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys; (b) variation of energy difference ΔE and e/a of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys with Fe doping content.

    图 4  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的原子间距 (a) 奥氏体; (b) 马氏体

    Fig. 4.  Atomic distance of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) Austenite; (b) martensite.

    图 5  (a) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金的总磁矩; (b) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) 合金的原子磁矩

    Fig. 5.  (a) Total magnetic moments of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys; (b) atomic magnetic moments of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys.

    图 6  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的总态密度 (a) x = 3.125; (b) x = 6.25; (c) x = 9.375

    Fig. 6.  TDOS of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) x = 3.125; (b) x = 6.25; (c) x = 9.375.

    图 7  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的分波电子态密度 (a) x = 3.125; (b) x = 6.25; (c) x = 9.375

    Fig. 7.  PDOS of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) x = 3.125; (b) x = 6.25; (c) x = 9.375.

    表 1  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的电子浓度e/a、晶胞体积Vcell和电子密度n

    Table 1.  Electron concentration (e/a), the cell volume (Vcell), and density of electrons (n) of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys.

    成分e/aVcelln
    x = 3.1258.06201.250.641
    x = 6.258200.310.639
    x = 9.3757.94199.380.637
    下载: 导出CSV

    表 2  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的平衡晶格常数

    Table 2.  Equilibrium lattice parameters of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys.

    晶格常数铁掺杂量
    x = 3.125x = 6.25x = 9.375
    Austenitea = b = c5.865.855.84
    V3201.25200.31199.38
    Martensitea9.097.527.51
    b4.143.763.76
    c5.086.836.81
    V3190.94193.41192.49
    下载: 导出CSV
  • [1]

    Kainuma R, Oikawa K, Ito W, Sutou Y, Kanomata T, Ishida K 2008 J. Mater. Chem. 18 1837Google Scholar

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 7079

    [3]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507Google Scholar

    [4]

    Otsuka K, Shimizu K, Cornelis I, Wayman C M 1972 Scr. Metall. 6 5

    [5]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [6]

    Pathak A K, Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 90 262504Google Scholar

    [7]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J, Aksoy S, Acet M 2010 Nat. Mater. 9 478Google Scholar

    [8]

    Huang Y J, Hu Q D, Bruno N M, Chen J, Karaman I, Ross Jr J H, Li J G 2015 Scr. Mater. 105 42Google Scholar

    [9]

    Xiao F, Fukuda T, Jin X, Liu J, Kakeshita T 2018 Phys. Status Solidi B 255 1700246Google Scholar

    [10]

    Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X, Wang Y 2019 Phys. Rev. Lett. 122 255703Google Scholar

    [11]

    Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X 2019 Intermetallics 110 106472Google Scholar

    [12]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923Google Scholar

    [13]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505Google Scholar

    [14]

    Huang L, Cong D Y, Suo H L, Wang Y D 2014 Appl. Phys. Lett. 104 132407Google Scholar

    [15]

    Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Appl. Phys. Lett. 107 022406Google Scholar

    [16]

    Li G J, Liu E K, Wu G H 2022 J. Alloys Compd. 923 166369Google Scholar

    [17]

    Wu M X, Zhou F, Khenata R, Kuang M Q, Wang X T 2021 Front. Chem. 8 546947

    [18]

    Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2016 Appl. Phys. Lett. 109 071904Google Scholar

    [19]

    Zeng Q Q, Shen J L, Zhang H N, Chen J, Ding B, Xi X X, Liu E K, Wang W H, Wu G H 2019 J. Phys. Condens. Matter 31 425401Google Scholar

    [20]

    Guan Z Q, Bai J, Gu J L, Liang X Z, Liu D, Jiang X J, Huang R K, Zhang Y D, Esling L D, Zhao X, Zuo L 2021 J. Mater. Sci. Technol. 68 103Google Scholar

    [21]

    Liu S, Xuan H, Cao T, Wang L, Xie Z, Liang X, Li H, Feng L, Chen F, Han P 2019 Phys. Status Solidi A 216 1900563Google Scholar

    [22]

    Taubel A, Beckmann B, Pfeuffer L, Fortunato N, Scheibel F, Ener S, Gottschall T, Skokov K P, Zhang H, Gutfleisch O 2020 Acta Mater. 201 425Google Scholar

    [23]

    Li S H, Cong D Y, Xiong W X, Chen Z, Zhang X, Nie Z, Li S, Li R, Wang Y, Cao Y 2021 ACS Appl. Mater. Interfaces 13 31870Google Scholar

    [24]

    Chang L C, Read T A 1951 J. Met. 1989 3 47

    [25]

    Buehler W J, Gilfrich J V, Wiley R C 1963 J. Appl. Phys. 34 1475Google Scholar

    [26]

    Liu X, Bai J, Sun S D, Xu J X, Jiang X J, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 J. Appl. Phys. 132 095101Google Scholar

    [27]

    Liu K, Ma S C, Ma C C, Han X Q, Yu K, Yang S, Zhang Z S, Song Y, Luo X H, Chen C C, Rehman S U, Zhong Z C 2019 J. Alloys Compd. 790 78Google Scholar

    [28]

    Qi H X, Bai J, Xu J X, Sun S D, Liu X, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 Mater. Today Commun. 33 104725Google Scholar

    [29]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Kresse G, Hafner J 1994 J. Phys. Condens. Matter. 6 8245Google Scholar

    [31]

    Froyen S 1989 Phys. Rev. B 39 3168Google Scholar

    [32]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904Google Scholar

    [33]

    Kaufmann S, Rößler U, Heczko O, Wuttig M, Buschbeck J, Schultz L, Fahler S 2010 Phys. Rev. Lett. 104 145702Google Scholar

    [34]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903Google Scholar

    [35]

    Chen X Q, Yang F J, Lu X, Qin Z X 2007 Phys. Status Solidi B 244 1047Google Scholar

    [36]

    Kundu A, Ghosh S, Ghosh S 2017 Phys. Rev. B 96 174107Google Scholar

    [37]

    Biochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [38]

    Xiao H B, Yang C P, Wang R L, Marchenkov V V, Bärner K 2012 J. Appl. Phys. 112 123723Google Scholar

    [39]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401Google Scholar

  • [1] 王家旭, 张一心, 马圣然, 李昊泽, 罗鸿志. Ni2Cu基Heusler合金的电子结构、弹性参数与马氏体相变的第一性原理研究. 物理学报, 2025, 74(4): 047101. doi: 10.7498/aps.74.20241485
    [2] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [3] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [4] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究. 物理学报, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [5] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [6] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [7] 申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录. Ni-Mn杂化对Mn50Ni41-xSn9Cux合金中马氏体相变温度和马氏体相磁性的影响. 物理学报, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [8] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [9] 张元磊, 李哲, 徐坤, 敬超. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究. 物理学报, 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [10] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [11] 宋瑞宁, 朱伟, 刘恩克, 李贵江, 陈京兰, 王文洪, 李祥, 吴光恒. 内应力对Mn2NiGa铁磁形状记忆合金的结构、相变和磁性能的影响. 物理学报, 2012, 61(2): 027501. doi: 10.7498/aps.61.027501
    [12] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [13] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [15] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [16] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [17] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [18] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [19] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
    [20] 崔玉亭, 朱亚波, 廖克俊, 王万录. Ni2MnGa单晶马氏体相变过程摩擦耗能的热动力学计算. 物理学报, 2004, 53(3): 861-866. doi: 10.7498/aps.53.861
计量
  • 文章访问数:  4312
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-11-16
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-20

/

返回文章
返回