搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金电极与吡啶末端连接界面结构的力学变化过程理论研究

刘琳 孙峰 李雨晨 严岩 刘冰心 羊志 邱帅 李宗良

引用本文:
Citation:

金电极与吡啶末端连接界面结构的力学变化过程理论研究

刘琳, 孙峰, 李雨晨, 严岩, 刘冰心, 羊志, 邱帅, 李宗良

Theoretical study on mechanical evolution process of interface between gold electrode and pyridyl anchor group

Liu Lin, Sun Feng, Li Yu-Chen, Yan Yan, Liu Bing-Xin, Yang Zhi, Qiu Shuai, Li Zong-Liang
PDF
HTML
导出引用
  • 利用基于第一性原理的绝热拉伸模拟方法计算了4, 4′-二吡啶分子与不同构型金电极之间的作用过程, 研究了分子在外力作用下逐渐远离金电极过程中分子与电极间界面结构特有的演化过程以及体系能量与作用力的变化特征. 结果显示, 分子在远离锥形电极过程中很容易出现近于垂直地连接到锥形电极第二层金原子上的特有连接构型, 同时由于吡啶末端的排斥作用, 电极尖端的金原子偏向一侧. 分子从第二层金原子上断开并连接到尖端金原子上需要1.3—1.5 nN的拉力作用, 明显大于分子从尖端电极上断开所需要的0.8—1.0 nN的作用力, 从而揭示了实验中二吡啶分子结在形成过程中作用力与界面构型变化之间的对应关系. 4, 4′-二吡啶分子与平面金电极的作用较弱, 只需要不到0.5 nN的作用力就可断开, 而当分子连接到吸附在平面电极表面的孤立金原子上时, 可以承受约1.7 nN的作用力. 以上研究表明基于第一性原理的绝热拉伸模拟方法不仅可以揭示分子与电极之间的界面结构演化过程, 而且通过作用力的计算可以很好地识别实验中分子与电极间的特有界面结构.
    Pyridyl-ended molecular junctions show high and low breaking forces successively in formation process and at the same time exhibit intriguing conductance switching behaviors. To understand the forming process of pyridyl-ended molecular junctions, the interaction between 4,4′-bipyridine molecule and gold electrode is studied by the ab initio-based adiabatic simulation method. The processes that the molecule moves away from electrode tip with different contact configurations are simulated, and the molecule-electrode interface evolutions, energy of the molecule-electrode system and the force between molecules and electrode are calculated in the simulations. The numerical results show that during the molecule moving away from the pyramid-shaped electrode, the pyridyl is easy to vertically adsorb on the second gold layer of the electrode tip. In this contact configurations, the tip Au atom deviates from the original position due to the lateral pushing force of the pyridyl. It needs about 1.3–1.5 nN stretching force for the pyridyl breaking from the second gold layer and switching to the tip Au atom, which is evidently larger than the force of 0.8–1.0 nN for the molecule breaking from the tip Au atom. This result is well consistent with the experimental observations, which thus reveals the relationship between the interface structures and the stretching force in the formation process of bipyridyl molecular junction in the experiment. The interaction between 4,4′-bipyridine molecule and plane-shaped gold electrode is very weak. It needs no more than 0.5 nN for the molecule breaking from the plane-shaped gold electrode. However, when the molecule adsorbs on the single Au atom which is adsorbed on the surface of plane-shaped electrode, the molecule can sustain 1.7 nN stretching force. Our study shows that the ab initio-based adiabatic stretching simulation method can not only reveal the geometric evolution process of molecule-electrode systems, but also identify the specific contact configurations between molecule and electrode.
      通信作者: 李宗良, lizongliang@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974217, 12204281)资助的课题.
      Corresponding author: Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217, 12204281).
    [1]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [2]

    Xu B Q, Tao N J 2003 Science 301 1221Google Scholar

    [3]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [4]

    Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar

    [5]

    Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, Del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [6]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Nitzan A, Guo X F 2016 Science 6292 1443Google Scholar

    [7]

    Cai S N, Deng W T, Huang F F, Chen L J, Tang C, He W X, Long S C, Li R H, Tan Z B, Liu J Y, Shi J, Liu Z T, Xiao Z Y, Zhang D Q, Hong W J 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [8]

    Xin N, Wang J Y, Jia C C, Liu Z T, Zhang X S, Yu C M, Li M L, Wang S P, Gong Y, Sun H T, Zhang G X, Liu Z R, Zhang G Y, Liao J H, Zhang D Q, Guo X F 2017 Nano Lett. 17 856Google Scholar

    [9]

    Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W J, Royal G, Wandlowski T 2013 J. Am. Chem. Soc. 135 5974Google Scholar

    [10]

    Jiang P, Morales G M, You W, Yu L P 2004 Angew. Chem. Int. Ed. 43 4471Google Scholar

    [11]

    Morales G M, Jiang P, Yuan S W, Lee Y G, Sanchez A, You W, Yu L P 2005 J. Am. Chem. Soc. 127 10456Google Scholar

    [12]

    Capozzi B, Xia J L, Adak O, Dell E J, Liu Z F, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotechnol. 10 522Google Scholar

    [13]

    Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar

    [14]

    Han Y M, Nickle C, Zhang Z Y, Astier H P A G, Duffin T J, Qi D C, Wang Z, Del Barco E, Thompson D, Nijhuis C A 2020 Nat. Mater. 19 843Google Scholar

    [15]

    Kumar S, Merelli M, Danowski W, Rudolf P, Feringa B L, Chiechi R C 2019 Adv. Mater. 31 1807831Google Scholar

    [16]

    Lee J, Chang H J, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar

    [17]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [18]

    Zhou M, Lu Y H, Cai Y Q, Zhang C, Feng Y P 2011 Nanotechnology 22 385502Google Scholar

    [19]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [20]

    Zhao W K, Zou D Q, Sun Z P, Yu Y J, Yang C L 2018 Phys. Lett. A 382 2666Google Scholar

    [21]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [22]

    Schliemann J, Egues J C, Loss D 2003 Phys. Rev. Lett. 90 146801Google Scholar

    [23]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [24]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724Google Scholar

    [25]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [26]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L, Chen X, Wang M, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [27]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [28]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao J L, Hong W J 2019 Sci. Chin. Chem. 62 1245Google Scholar

    [29]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol. 4 230Google Scholar

    [30]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [31]

    Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar

    [32]

    Xin N, Guan J X, Zhou C G, Chen X J N, Gu C H, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X F 2019 Nat. Rev. Phys. 1 211Google Scholar

    [33]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [34]

    Pan Z C, Chen L C, Tang C, Hu Y, Yuan S S, Gao T Y, Shi J, Shi J, Yang Y, Hong W J 2022 Small 18 2107220Google Scholar

    [35]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [36]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318Google Scholar

    [37]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [38]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [39]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [40]

    Arroyo C R, Leary E, Castellanos-Gomez A, Rubio-Bollinger G, Gonzalez M T, Agrait N 2011 J. Am. Chem. Soc. 133 14313Google Scholar

    [41]

    Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C, Venkataraman L 2007 J. Am. Chem. Soc. 129 15768Google Scholar

    [42]

    Aradhya S V, Venkataraman L 2013 Nat. Nanotechnol. 8 399Google Scholar

    [43]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [44]

    Venkataraman L, Klare J E, Tam I W, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nano Lett. 6 458Google Scholar

    [45]

    Hybertsen M S, Venkataraman L, Klare J E, Whalley A C, Steigerwald M L, Nuckolls C 2008 J. Phys. Condens. Matter 20 374115Google Scholar

    [46]

    Mezei G, Balogh Z, Magyarkuti A, Halbritter A 2020 J. Phys. Chem. Lett. 11 8053Google Scholar

    [47]

    Magyarkuti A, Balogh Z, Mezei G, Halbritter A 2021 J. Phys. Chem. Lett. 12 1759Google Scholar

    [48]

    Darancet P, Widawsky J R, Choi H J, Venkataraman L, Neaton J B 2012 Nano Lett. 12 6250Google Scholar

    [49]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B Q, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [50]

    Xu B Q, Xiao X Y, Tao N J 2003 J. Am. Chem. Soc. 125 16164Google Scholar

    [51]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [52]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [53]

    Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar

    [54]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [55]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT)

  • 图 1  4, 4′-二吡啶分子连接到不同构型金电极上的初始结构 (a) 分子连接在理想锥形电极旁边(体系I); (b) 分子与只有最尖端两层金原子构成锥形的电极相连接, 电极的第三层有较多金原子形成平台构型(体系II); (c) 分子与吸附有孤立金原子的平面电极相连接(体系III); (d) 分子与平面电极相连接(体系Ⅳ)

    Fig. 1.  The initial configurations for 4, 4′-bipyridine connecting with different gold electrode: (a) The molecule is connected beside ideal pyramid-shaped gold electrode (system Ⅰ); (b) the molecule connects with the gold electrode in which only the top two layers of Au atoms form pyramid shape (system Ⅱ). In this system the third layer of the electrode contains more Au atoms which form a platform; (c) the molecule adsorbs on planar-shaped gold electrode with a single Au atom on the electrode surface (system Ⅲ); (d) the molecule adsorbs on planar-shaped gold electrode without single surface Au atom (system Ⅳ).

    图 2  4, 4′-二吡啶分子在拉力作用下远离不同构型电极表面的结构演化过程 (a)—(d) 体系I; (e)—(h) 体系II; (i)—(l) 体系III; (m)—(p) 体系IV

    Fig. 2.  The structure evolution processes for 4, 4′-bipyridine moves away from gold electrodes with different tip geometries: (a)–(d) System I; (e)–(h) system II; (i)–(l) system III; (m)–(p) system IV.

    图 3  4, 4′-二吡啶分子在拉力作用下远离不同构型电极过程中体系能量和作用力变化曲线 (a) 体系I; (b)体系II; (c) 体系III; (d) 体系IV

    Fig. 3.  The energy and force traces for (a) system I, (b) system II, (c) system III and (d) system IV with 4, 4′-bipyridine moving away from different gold electrodes.

    图 4  体系I、体系II 和体系III中部分同时离域到分子和电极上的占据轨道的空间分布, 其中括号中的数字分别为总的离域占据轨道数目和对N-Au键有贡献的轨道数目

    Fig. 4.  The spatical distributions of part delocalized occupied molecular orbitals for system I, system II and system III. These orbitals are both delocalized on the molecule and electrode. The figures in the brakets are the total numbers of the delocalized occupied molecular orbitals and the orbitals which have contributions to N-Au bond.

  • [1]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [2]

    Xu B Q, Tao N J 2003 Science 301 1221Google Scholar

    [3]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [4]

    Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar

    [5]

    Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, Del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [6]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Nitzan A, Guo X F 2016 Science 6292 1443Google Scholar

    [7]

    Cai S N, Deng W T, Huang F F, Chen L J, Tang C, He W X, Long S C, Li R H, Tan Z B, Liu J Y, Shi J, Liu Z T, Xiao Z Y, Zhang D Q, Hong W J 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [8]

    Xin N, Wang J Y, Jia C C, Liu Z T, Zhang X S, Yu C M, Li M L, Wang S P, Gong Y, Sun H T, Zhang G X, Liu Z R, Zhang G Y, Liao J H, Zhang D Q, Guo X F 2017 Nano Lett. 17 856Google Scholar

    [9]

    Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W J, Royal G, Wandlowski T 2013 J. Am. Chem. Soc. 135 5974Google Scholar

    [10]

    Jiang P, Morales G M, You W, Yu L P 2004 Angew. Chem. Int. Ed. 43 4471Google Scholar

    [11]

    Morales G M, Jiang P, Yuan S W, Lee Y G, Sanchez A, You W, Yu L P 2005 J. Am. Chem. Soc. 127 10456Google Scholar

    [12]

    Capozzi B, Xia J L, Adak O, Dell E J, Liu Z F, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotechnol. 10 522Google Scholar

    [13]

    Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar

    [14]

    Han Y M, Nickle C, Zhang Z Y, Astier H P A G, Duffin T J, Qi D C, Wang Z, Del Barco E, Thompson D, Nijhuis C A 2020 Nat. Mater. 19 843Google Scholar

    [15]

    Kumar S, Merelli M, Danowski W, Rudolf P, Feringa B L, Chiechi R C 2019 Adv. Mater. 31 1807831Google Scholar

    [16]

    Lee J, Chang H J, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar

    [17]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [18]

    Zhou M, Lu Y H, Cai Y Q, Zhang C, Feng Y P 2011 Nanotechnology 22 385502Google Scholar

    [19]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [20]

    Zhao W K, Zou D Q, Sun Z P, Yu Y J, Yang C L 2018 Phys. Lett. A 382 2666Google Scholar

    [21]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [22]

    Schliemann J, Egues J C, Loss D 2003 Phys. Rev. Lett. 90 146801Google Scholar

    [23]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [24]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724Google Scholar

    [25]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [26]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L, Chen X, Wang M, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [27]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [28]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao J L, Hong W J 2019 Sci. Chin. Chem. 62 1245Google Scholar

    [29]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol. 4 230Google Scholar

    [30]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [31]

    Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar

    [32]

    Xin N, Guan J X, Zhou C G, Chen X J N, Gu C H, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X F 2019 Nat. Rev. Phys. 1 211Google Scholar

    [33]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [34]

    Pan Z C, Chen L C, Tang C, Hu Y, Yuan S S, Gao T Y, Shi J, Shi J, Yang Y, Hong W J 2022 Small 18 2107220Google Scholar

    [35]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [36]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318Google Scholar

    [37]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [38]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [39]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [40]

    Arroyo C R, Leary E, Castellanos-Gomez A, Rubio-Bollinger G, Gonzalez M T, Agrait N 2011 J. Am. Chem. Soc. 133 14313Google Scholar

    [41]

    Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C, Venkataraman L 2007 J. Am. Chem. Soc. 129 15768Google Scholar

    [42]

    Aradhya S V, Venkataraman L 2013 Nat. Nanotechnol. 8 399Google Scholar

    [43]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [44]

    Venkataraman L, Klare J E, Tam I W, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nano Lett. 6 458Google Scholar

    [45]

    Hybertsen M S, Venkataraman L, Klare J E, Whalley A C, Steigerwald M L, Nuckolls C 2008 J. Phys. Condens. Matter 20 374115Google Scholar

    [46]

    Mezei G, Balogh Z, Magyarkuti A, Halbritter A 2020 J. Phys. Chem. Lett. 11 8053Google Scholar

    [47]

    Magyarkuti A, Balogh Z, Mezei G, Halbritter A 2021 J. Phys. Chem. Lett. 12 1759Google Scholar

    [48]

    Darancet P, Widawsky J R, Choi H J, Venkataraman L, Neaton J B 2012 Nano Lett. 12 6250Google Scholar

    [49]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B Q, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [50]

    Xu B Q, Xiao X Y, Tao N J 2003 J. Am. Chem. Soc. 125 16164Google Scholar

    [51]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [52]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [53]

    Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar

    [54]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [55]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT)

  • [1] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构. 物理学报, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [2] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N、B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240174
    [3] 严岩, 孙峰, 羊志, 孔程昱, 葛云龙, 陈登辉, 邱帅, 李宗良. 金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用. 物理学报, 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [4] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理. 物理学报, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [5] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [6] 索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良. 分子结拉伸与界面识别: 破解4, 4′-二吡啶分子结拉伸过程中高低电导之谜. 物理学报, 2020, 69(20): 208502. doi: 10.7498/aps.69.20201297
    [7] 杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起. 外场作用下C12H4Cl4O2的分子结构和电子光谱研究. 物理学报, 2018, 67(22): 223101. doi: 10.7498/aps.67.20181454
    [8] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [9] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应. 物理学报, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [11] 邓伦华, 李传亮, 朱圆月, 何文艳, 陈扬骎. NO分子b4Σ--a4Πi(4,0)带的吸收光谱. 物理学报, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [12] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究. 物理学报, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [13] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算. 物理学报, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [14] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [15] 张鸿宇, 王利光, 张秀梅, 郁鼎文, 李 勇. 富勒烯C20分子器件的电子结构和传导特性. 物理学报, 2008, 57(10): 6271-6276. doi: 10.7498/aps.57.6271
    [16] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响. 物理学报, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [17] 刘纪彩, 赵 珂, 宋玉志, 王传奎. 级联三能级模型下超短脉冲激光与分子相互作用的动力学研究. 物理学报, 2006, 55(4): 1803-1808. doi: 10.7498/aps.55.1803
    [18] 邹 斌, 李宗良, 王传奎, 薛其坤. 电极距离对分子器件电输运特性的影响. 物理学报, 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [19] 张书锋, 苏国林, 任雪光, 宁传刚, 周 晖, 李 彬, 李桂琴, 邓景康. 二乙酰分子内价轨道4ag+4bu的电子动量谱学研究. 物理学报, 2005, 54(4): 1552-1556. doi: 10.7498/aps.54.1552
    [20] 雷雨, 程兆年, 唐鼎元. β─BaB2O4晶体生长母液结构的分子动力学模拟研究. 物理学报, 1997, 46(3): 511-523. doi: 10.7498/aps.46.511
计量
  • 文章访问数:  2314
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2022-11-30
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回