搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负三角形变位型下剥离气球模的非线性演化特征

秦晨晨 牟茂淋 陈少永

引用本文:
Citation:

负三角形变位型下剥离气球模的非线性演化特征

秦晨晨, 牟茂淋, 陈少永

Nonlinear evolution characteristics of peeling-ballooning mode under negative triangularity

Qin Chen-Chen, Mou Mao-Lin, Chen Shao-Yong
PDF
HTML
导出引用
  • 托卡马克实验中已经实现了负三角形变位型下的高约束放电, 其特点是具有较低的台基, 并伴随幅值较小且频率较高的边界局域模. 本文基于不同三角形变的托卡马克平衡, 研究了负三角形变位型条件下剥离气球模的非线性演化特征. 研究发现, 由于弱场侧坏曲率区域增大, 负三角形变位型会使剥离气球模失稳; 在非线性阶段, 负三角形变位型下的剥离气球模压强扰动分布在极向截面上扩展到了弱场侧的顶部和底部区域, 使得边界局域模更早发生崩塌, 同时, 在负三角形变位型下, 多种环向模数的扰动被激发并增长, 故而具有更明显的湍流输运特性.
    Experiments on TCV tokamak have achieved high confinement mode (H-mode) operation with negative triangularity, and this mode shows quite different characteristics from those with the positive triangularity in experiment and simulation. Linear simulations for kinetic ballooning mode and peeling-ballooning(PB) mode without diamagnetic effect show that negative triangularity can enhance the instability of the ballooning mode and close access to the second stable region. However, the understanding of ELM for negative triangularity is not sufficient. Therefore, it is necessary to carry out further research on ELM with negative triangularity.In this work, based on a series of equilibria with different triangularities in Tokamak, the nonlinear characteristics of negative triangularity of PB mode is investigated. It is found that the negative triangularity can destabilize the PB mode by a larger unfavorable curvature region, which will reduce the instability threshold, and thus limiting the increase of pedestal height. In the nonlinear phase, the pressure perturbation intensity with negative triangularity will extend to the top area and the bottom area in the low field side and bring about an earlier ELM collapse. Meanwhile, modes with different toroidal mode numbers are more likely to be triggered off and then grow and replaces the initial unstable mode, showing more obvious turbulent transport characteristics, which can play a role in the ELM energy loss.
      通信作者: 牟茂淋, mlmou@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11905152)、国家磁约束核聚变能发展研究专项(批准号: 2019YFE03090400, 2019YFE03030004)、国家重点研发计划 (批准号: 2017YFE0301203, 2017YFE0301101)和四川省自然科学基金(批准号: 2022NSFSC1820)资助的课题.
      Corresponding author: Mou Mao-Lin, mlmou@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11905152), the National Magnetic Confinement Fusion Energy R&D Program of China (Grant Nos. 2019YFE03090400, 2019YFE03030004), the National Key R&D Program of China (Grant Nos. 2017YFE0301203, 2017YFE0301101), and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC1820).
    [1]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, Müller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [2]

    Zohm H 1996 Plasma Phys. Controlled Fusion 38 105Google Scholar

    [3]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [4]

    Lao L L, Ferron J R, Miller R L, Osborne T H, Chan V S, Groebner R J, Jackson G L, La Haye R J, Strait E J, Taylor T S, Turnbull A D, Doyle E J, Lazarus E A, Murakami M, McKee G R, Rice B W, Zhang C, Chen L 1999 Nucl. Fusion 39 1785Google Scholar

    [5]

    Onjun T, Kritz A H, Bateman G, Parail V, Lonnroth J, Huysmans G 2004 Phys. Plasmas 11 3006Google Scholar

    [6]

    Laggner F M, Wolfrum E, Cavedon M, Dunne M G, Birkenmeier G, Fischer R, Willensdorfer M, Aumayr F, Team E M, Team A U 2018 Nucl. Fusion 58 046008Google Scholar

    [7]

    Sugihara M, Mukhovatov V, Polevoi A, Shimada M 2003 Plasma Phys. Controlled Fusion 45 L55Google Scholar

    [8]

    Wilson H R, Connor J W, Field A R, Fielding S J, Miller R L, Lao L L, Ferron J R, Turnbull A D 1999 Phys. Plasmas 6 1925Google Scholar

    [9]

    Saarelma S, Austin M E, Knolker M, Marinoni A, Paz-Soldan C, Schmitz L, Snyder P B 2021 Plasma Phys Contr F 63 105006Google Scholar

    [10]

    Austin M E, Marinoni A, Walker M L, Brookman M W, deGrassie J S, Hyatt A W, McKee G R, Petty C C, Rhodes T L, Smith S P, Sung C, Thome K E, Turnbull A D 2019 Phys. Rev. Lett. 122 115001Google Scholar

    [11]

    Pochelon A, Angelino P, Behn R, Brunner S, Coda S, Kirneva N, Medvedev S Y, Reimerdes H, Rossel J, Sauter O, Villard L, WÁGner D, Bottino A, Camenen Y, Canal G P, Chattopadhyay P K, Duval B P, Fasoli A, Goodman T P, Jolliet S, Karpushov A, Labit B, Marinoni A, Moret J M, Pitzschke A, Porte L, Rancic M, Udintsev V S, the T C V T 2012 Plasma Fusion Res. 7 2502148Google Scholar

    [12]

    Medvedev S Y, Kikuchi M, Villard L, Takizuka T, Diamond P, Zushi H, Nagasaki K, Duan X, Wu Y, Ivanov A A, Martynov A A, Poshekhonov Y Y, Fasoli A, Sauter O 2015 Nucl. Fusion 55 063013Google Scholar

    [13]

    Merle A, Sauter O, Medvedev S Y 2017 Plasma Phys. Controlled Fusion 59 104001Google Scholar

    [14]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 Corsica: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program (Livermore, CA: Lawrence Livermore National Laboratory)

    [15]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [16]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [17]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [18]

    Greene J M, Chance M S 1981 Nucl. Fusion 21 453Google Scholar

    [19]

    Sauter O, Angioni C, Lin-Liu Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [20]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [21]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [22]

    Freidberg J P 2014 IDEAL MHD (Cambridge: Cambridge University Press)

    [23]

    Xu X Q, Ma J F, Li G Q 2014 Phys Plasmas 21 120704Google Scholar

    [24]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [25]

    Xu X Q, Xia T Y, Yan N, Liu Z X, Kong D F, Diallo A, Groebner R J, Hubbard A E, Hughes J W 2016 Phys. Plasmas 23 055901Google Scholar

    [26]

    Gui B, Xu X Q, Myra J R, D'Ippolito D A 2014 Phys. Plasmas 21 112302Google Scholar

  • 图 1  不同三角形变位型的磁面 (a) $ \delta =0; $ (b) $ \delta =-0.3 $, 蓝色实线代表 $ {\psi }_{{\rm{n}}}=0.4 $到1的磁面, 归一化磁通间隔为$ {\psi }_{{\rm{n}}}=0.1 $, 其中$ {\psi }_{{\rm{n}}}=\left(\psi -{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right)/\left({\psi }_{{\rm{s}}{\rm{e}}{\rm{p}}}-{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right) $, 绿色区域为坏曲率区域($\nabla {B}^{2}\cdot \nabla P > 0$), 黄色区域为好曲率区($\nabla {B}^{2}\cdot \nabla P < 0$)[9,18], 黑色虚线为中平面位置

    Fig. 1.  Comparison of magnetic surfaces with varied δ: (a) $ \delta =0; $ (b) $ \delta =-0.3 $. Blue lines represent the magnetic surfaces from $ {\psi }_{{\rm{n}}}=0.4 $ to 1 with an interval of 0.1, $ {\psi }_{{\rm{n}}}=\left(\psi -{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right)/\left({\psi }_{{\rm{s}}{\rm{e}}{\rm{p}}}-{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right) $ is the normalized radial coordinate. The green areas show the unfavorable curvature regions where $\nabla {B}^{2}\cdot \nabla P > 0$ and yellow areas show the favorable curvature regions where $\nabla {B}^{2}\cdot \nabla P < 0$. Black dashed line shows the position of the midplane.

    图 2  压强剖面$ {P}_{0} $(黑色实线)和三角形变分别为$ \delta =-0.3 $ (红色实线), $ \delta =0.0 $ (蓝色点线)的平行电流剖面 $ {J}_{\parallel 0} $

    Fig. 2.  The pressure $ {P}_{0} $ (black solid line) and parallel current $ {J}_{\parallel 0} $ profiles for cases $ \delta =0.0 $ (blue dotted line) and $ \delta =0.3 $ (red solid line).

    图 3  不同三角形变($ \delta =-0.3—0 $)位型的P-B模线性增长率模谱

    Fig. 3.  Linear growth rates versus toroidal mode number for $\delta =-0.3$–0.

    图 4  不同三角形变($ \delta =-0.3—0 $)位型外中平面上的局域磁剪切 $ {s}_{{\rm{l}}} $在径向上的变化

    Fig. 4.  Profiles of local shear $ {s}_{l} $ at the outer midplane for $\delta =-0.3$–0.

    图 5  不同三角形变位型下ELM能量损失的对数值随时间的演化

    Fig. 5.  Time evolution of the logarithm of ELM size for different triangularity cases.

    图 6  (a) $ \delta =0 $和(b$\delta =-0.2$位型下, $ t=193{{\rm{\tau }}}_{{\rm{A}}} $时扰动压强的环向平均在极向截面的分布. 弱场侧顶部和底部区域的黑色虚线框显示了比较区域, 黑色点线表示中平面位置

    Fig. 6.  Distribution of the toroidal-averaged pressure perturbation at the poloidal cross section at $ t=193{\tau }_{{\rm{A}}} $ for cases (a) $ \delta =0 $ and (b) $ \delta =-0.2 $. Black dashed frames at the top and bottom areas in the low field side show the regions for comparison. Black dotted line shows the position of the midplane.

    图 7  (a1)—(a3)$\delta =0$和(b1)—(b3) $ \delta =-0.2 $$t=100,~ 200, ~300{\tau }_{{\rm{A}}}$时在外中平面上的压强扰动

    Fig. 7.  Pressure perturbation at $ t=100, 200, 300{\tau }_{{\rm{A}}} $ at the outer midplane for cases: (a1)–(a3)$\delta =0;$(b1)−(b3)$\delta =-0.2$.

    图 8  (a)$\delta =0$ 和 (b) $ \delta =-0.2 $位型下的环向模式演化

    Fig. 8.  Modes evolution for cases: (a) $ \delta =0; $ (b) $ \delta =-0.2 $.

  • [1]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, Müller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [2]

    Zohm H 1996 Plasma Phys. Controlled Fusion 38 105Google Scholar

    [3]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [4]

    Lao L L, Ferron J R, Miller R L, Osborne T H, Chan V S, Groebner R J, Jackson G L, La Haye R J, Strait E J, Taylor T S, Turnbull A D, Doyle E J, Lazarus E A, Murakami M, McKee G R, Rice B W, Zhang C, Chen L 1999 Nucl. Fusion 39 1785Google Scholar

    [5]

    Onjun T, Kritz A H, Bateman G, Parail V, Lonnroth J, Huysmans G 2004 Phys. Plasmas 11 3006Google Scholar

    [6]

    Laggner F M, Wolfrum E, Cavedon M, Dunne M G, Birkenmeier G, Fischer R, Willensdorfer M, Aumayr F, Team E M, Team A U 2018 Nucl. Fusion 58 046008Google Scholar

    [7]

    Sugihara M, Mukhovatov V, Polevoi A, Shimada M 2003 Plasma Phys. Controlled Fusion 45 L55Google Scholar

    [8]

    Wilson H R, Connor J W, Field A R, Fielding S J, Miller R L, Lao L L, Ferron J R, Turnbull A D 1999 Phys. Plasmas 6 1925Google Scholar

    [9]

    Saarelma S, Austin M E, Knolker M, Marinoni A, Paz-Soldan C, Schmitz L, Snyder P B 2021 Plasma Phys Contr F 63 105006Google Scholar

    [10]

    Austin M E, Marinoni A, Walker M L, Brookman M W, deGrassie J S, Hyatt A W, McKee G R, Petty C C, Rhodes T L, Smith S P, Sung C, Thome K E, Turnbull A D 2019 Phys. Rev. Lett. 122 115001Google Scholar

    [11]

    Pochelon A, Angelino P, Behn R, Brunner S, Coda S, Kirneva N, Medvedev S Y, Reimerdes H, Rossel J, Sauter O, Villard L, WÁGner D, Bottino A, Camenen Y, Canal G P, Chattopadhyay P K, Duval B P, Fasoli A, Goodman T P, Jolliet S, Karpushov A, Labit B, Marinoni A, Moret J M, Pitzschke A, Porte L, Rancic M, Udintsev V S, the T C V T 2012 Plasma Fusion Res. 7 2502148Google Scholar

    [12]

    Medvedev S Y, Kikuchi M, Villard L, Takizuka T, Diamond P, Zushi H, Nagasaki K, Duan X, Wu Y, Ivanov A A, Martynov A A, Poshekhonov Y Y, Fasoli A, Sauter O 2015 Nucl. Fusion 55 063013Google Scholar

    [13]

    Merle A, Sauter O, Medvedev S Y 2017 Plasma Phys. Controlled Fusion 59 104001Google Scholar

    [14]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 Corsica: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program (Livermore, CA: Lawrence Livermore National Laboratory)

    [15]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [16]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [17]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [18]

    Greene J M, Chance M S 1981 Nucl. Fusion 21 453Google Scholar

    [19]

    Sauter O, Angioni C, Lin-Liu Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [20]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [21]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [22]

    Freidberg J P 2014 IDEAL MHD (Cambridge: Cambridge University Press)

    [23]

    Xu X Q, Ma J F, Li G Q 2014 Phys Plasmas 21 120704Google Scholar

    [24]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [25]

    Xu X Q, Xia T Y, Yan N, Liu Z X, Kong D F, Diallo A, Groebner R J, Hubbard A E, Hughes J W 2016 Phys. Plasmas 23 055901Google Scholar

    [26]

    Gui B, Xu X Q, Myra J R, D'Ippolito D A 2014 Phys. Plasmas 21 112302Google Scholar

  • [1] 樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建. 低杂波注入对剥离气球模的作用. 物理学报, 2024, 73(9): 095204. doi: 10.7498/aps.73.20240130
    [2] 刘泰齐, 陈少永, 牟茂淋, 唐昌建. 超电阻对气球模线性不稳定性影响的理论研究. 物理学报, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [3] 任珍珍, 申伟. 负三角形变托卡马克位形下高能量离子激发鱼骨模的模拟研究. 物理学报, 2023, 72(21): 215202. doi: 10.7498/aps.72.20230650
    [4] 黄艳, 孙继忠, 桑超峰, 王德真. ITER 第一类边界局域模对排布位错偏滤器靶板钨/铜瓦片腐蚀程度的数值模拟. 物理学报, 2023, 72(18): 185202. doi: 10.7498/aps.72.20230281
    [5] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究. 物理学报, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [6] 孟淼, 严德贤, 李九生, 孙帅. 基于嵌套三角形包层结构负曲率太赫兹光纤的研究. 物理学报, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [7] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [8] 黄艳, 孙继忠, 桑超峰, 胡万鹏, 王德真. 边界局域模引起钨偏滤器靶板侵蚀和形貌变化的数值模拟研究. 物理学报, 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [9] 周雯, 陈鹤鸣. 基于磁光效应的二维三角晶格光子晶体模分复用器. 物理学报, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [10] 刘志刚, 刘伟龙, 赵海军. 量子计算正三角形腔内的氢负离子光剥离截面. 物理学报, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [11] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [12] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [13] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [14] 张军, 于天宝, 刘念华, 廖清华, 何灵娟. 全内反射型三角晶格光子晶体多模波导中的光传播特性. 物理学报, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [15] 周本元, 黄晖, 李高翔. 三模高斯态光场非局域性的增强. 物理学报, 2009, 58(3): 1679-1684. doi: 10.7498/aps.58.1679
    [16] 张大成, 王鹿霞, 刘德胜, 韩圣浩, 解士杰. 扰动对一维局域模的影响. 物理学报, 2003, 52(12): 3191-3196. doi: 10.7498/aps.52.3191
    [17] 潘传红, 丁厚昌, 吴灵桥. 耗散气球模动力理论. 物理学报, 1986, 35(11): 1411-1425. doi: 10.7498/aps.35.1411
    [18] 石秉仁, 隋国芳. 含第二稳定区的环流器微观气球模分析. 物理学报, 1984, 33(11): 1546-1555. doi: 10.7498/aps.33.1546
    [19] 石秉仁. 环流器等离子体高n气球模的第二稳定区. 物理学报, 1983, 32(11): 1398-1406. doi: 10.7498/aps.32.1398
    [20] 李荫远, 朱砚磬. 立方铁磁体中的自旋波局域模. 物理学报, 1963, 19(11): 753-763. doi: 10.7498/aps.19.753
计量
  • 文章访问数:  3684
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-11-29
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回