搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双腔双光力系统中的光非互易传输特性

刘妮 马硕 梁九卿

引用本文:
Citation:

双腔双光力系统中的光非互易传输特性

刘妮, 马硕, 梁九卿

Nonreciprocal transmission characteristics in double-cavity double-optomechanical system

Liu Ni, Ma Shuo, Liang Jiu-Qing
PDF
HTML
导出引用
  • 光学非互易器件是光学系统中重要的组成部分, 例如光隔离器. 为了提高这类器件的隔离特性, 提出一种双腔双光力系统, 系统以两种大小不同的光力耦合强度分别与两光学腔相耦合. 该系统在红失谐场的驱动下, 通过调控相位差既可以实现光非互易现象, 又能决定光在系统中透过与隔离的方向, 这种性质来源于光力耦合相互作用和光学腔模耦合之间的量子干涉效应. 研究过程中把系统中相关算符用其平均值加各自的相对涨落值来表示, 然后由涨落值利用输入-输出关系得到系统的传输振幅, 进而得到系统隔离率. 讨论了系统隔离率随光力耦合强度变化的分布情况, 发现两个力学振子的共同作用能使系统有更高的容错率. 该系统通过选用一个品质因数更高的力学振子, 能够实现两种特定频率光的较大隔离率, 并且同时能够保证共振频率信号的反向传输 .
    Optical non-reciprocal devices such as the isolators are quite important components in optical systems. To realize the non-reciprocal transmission of the light, the Lorenz reciprocity theorem must be broken first and the main method is that Faraday magnetic rotation effect is used to change the polarization state of the signal through magneto-optical materials. However, this method is difficult to achieve on-chip integration. So using optomechanical system is presented to overcome the difficulty.In order to improve the isolation characteristics of the device, a double-cavity double-optomechanical system, which is coupled to two optical modes by two mechanical oscillators with two different optomechanical coupling strengths, is proposed. Driven by the red detuning field in such a system, the non-reciprocal phenomenon can be realized by regulating the phase difference, and the direction of light transmission and isolation can be determined as well. This property is determined by the quantum interference effect between the optomechanical coupling strengths and the couplings of the optical cavity modes. The method is that the relative operators are represented by their average value plus their relative fluctuations, and then according to the input-output relationship the transmission amplitude and the isolation rate are obtained.We mainly discuss the distribution of the isolation rate as a function of the optomechanical coupling strength. The results are that the combined action of two mechanical modes can make the system have higher fault tolerance rate. The other mechanical mode can make the system achieve a large isolation rate at two specific frequencies and the reverse transmission in the resonant frequency signals at the same time.
      通信作者: 刘妮, 317446484@qq.com
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1404500)、国家自然科学基金(批准号: 12147215)、山西省回国留学人员科研经费(批准号: 2022-014)、山西省基础研究计划(批准号: 202203021211301)和山西省“1331”工程资助的课题.
      Corresponding author: Liu Ni, 317446484@qq.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1404500), the National Natural Science Foundation of China (Grant No. 12147215), the Shanxi Scholarship Council of China (Grant No. 2022-014), the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021211301), and the Fund for Shanxi “1331 Project” Key Subjects, China.
    [1]

    Xia C C, Yan X B, Tian X D, Gao F 2019 Opt. Commun. 451 197Google Scholar

    [2]

    朱雪松, 刘星雨, 张岩 2022 物理学报 71 150701Google Scholar

    Zhu X S, Liu X Y, Zhang Y 2022 Acta Phys. Sin. 71 150701Google Scholar

    [3]

    Jing Y W 2022 Sci. Rep. 12 5844Google Scholar

    [4]

    Jiang C, Song L N, Li Y 2018 Phys. Rev. A 97 053812Google Scholar

    [5]

    Asadchy V S, Mirmoosa M S, Diaz-Rubio A, Fan S, Tretyakov S A 2020 Proc. IEEE 108 1684Google Scholar

    [6]

    Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [7]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [8]

    Tang J S, Nie W, Tang L, Chen M Y, Su X, Lu Y Q, Nori F, Xia K Y 2022 Phys. Rev. Lett. 128 203602Google Scholar

    [9]

    Hu Y Q, Qi Y H, You Y, Zhang S C, Lin G W, Li X L, Gong J B, Gong S Q, Niu Y P 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [10]

    Peterson C W, Benalcazar W A, Lin M, Hughes T L, Bahl G 2019 Phys. Rev. Lett. 123 063901Google Scholar

    [11]

    Hu X X, Wang Z B, Zhang P F, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T C, Tang H X, Dong C H, Guo G C, Zou C L 2021 Nat. Commun. 12 2389Google Scholar

    [12]

    Liang C, Liu B, Xu A N, Wen X, Lu C C, Xia K Y, Tey M K, Liu Y C, You L 2020 Phys. Rev. Lett. 125 123901Google Scholar

    [13]

    Huang X Y, Lu C C, Liang C, Tao H G, Liu Y C 2021 Light Sci. Appl. 10 30Google Scholar

    [14]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [15]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B, Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [16]

    Peterson G A, Lecocq F, Cicak K, Simmonds R W, Aumentado J, Teufel J D 2017 Phys. Rev. X 7 031001Google Scholar

    [17]

    Tang J D, Cai Q Z, Cheng Z D, Xu N, Peng G Y, Chen P Q, Wang D G, Xia Z W, Wang Y, Song H Z, Zhou Q, Deng G W 2022 Phys. Lett. A 429 127966Google Scholar

    [18]

    刘妮, 王建芬, 梁九卿 2020 物理学报 69 064202Google Scholar

    Liu N, Wang J F, Liang J Q 2020 Acta Phys. Sin. 69 064202Google Scholar

    [19]

    Jiang C, Liu Y L, Sillanpaa M A 2021 Phys. Rev. A 104 013502Google Scholar

    [20]

    Xiao R J, Pan G X, Xiu X M 2021 Chin. Phys. B 30 034209Google Scholar

    [21]

    Yan K X, Zhang Y C, Cui Y S, Jiang C 2020 Opt. Commun. 475 126249Google Scholar

    [22]

    Qu K N, Agarwal G S 2013 Phys. Rev. A 87 63813Google Scholar

    [23]

    He Y 2016 Phys. Rev. A 94 063804Google Scholar

    [24]

    Singh S K, Parvez M, Abbas T, Peng J X, Mazaheri M, Asjad M 2022 Phys. Lett. A 442 128181Google Scholar

    [25]

    Xu X W, Li Y 2015 Phys. Rev. A 91 053854Google Scholar

    [26]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288Google Scholar

    [27]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [28]

    Ullah K 2019 Chin. Phys. B 28 114209Google Scholar

    [29]

    Chen Y T, Du L, Liu Y M, Zhang Y 2020 Opt. Express 28 7095Google Scholar

    [30]

    张利巍, 李贤丽, 杨柳 2019 物理学报 68 170701Google Scholar

    Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar

  • 图 1  双腔双光力系统示意图, 其中光学腔${a_i}$通过光力耦合相互作用${g_{ij}}$与力学振子${b_j}$相耦合, 同时两光学腔之间存在腔模线性耦合相互作用, 腔模两侧存在振幅为${\varepsilon _{{\text{d}}i}}$的驱动场和${\varepsilon _{{\text{p}}i}}$的探测场

    Fig. 1.  Diagram of double-cavity dual-optomechanical system. The optical cavity ${a_i}$ is coupled to the mechanical oscillator ${b_j}$ by the optomechanical coupling interaction $ {g}_{ij}$. And there is a cavity mode linear coupling interaction between two optical cavities, and there are the coupling fields with amplitude ${\varepsilon _{{\text{d}}i}}$ and the probe fields with amplitude ${\varepsilon _{{\text{p}}i}}$ on both sides of the cavity modes.

    图 2  ${x / \kappa } = 0$时, 传输振幅T随相位差α的变化 (其他参数: ${J/\kappa } = C = 1$)

    Fig. 2.  Transmission amplitudes T at ${x / \kappa } = 0$ are plotted against the phase difference α (Other parameters: ${J/\kappa } = $$ C = 1$).

    图 3  单个力学振子b1影响下, 不同方向输入场${\varepsilon _{{\text{p}}1}}$(a)和${\varepsilon _{{\text{p}}2}}$(b)的传输振幅T随标准化失谐$x/\kappa $的变化 (其他参数: $\alpha = {{\text{π }} \mathord{\left/ {\vphantom {{\text{π }} 2}} \right. } 2}$, ${J \mathord{\left/ {\vphantom {J \kappa }} \right. } \kappa } = 1$, ${{{\gamma _1}} \mathord{\left/ {\vphantom {{{\gamma _1}} \kappa }} \right. } \kappa } = 0.25$, ${G_2} = 0$, ${{{G_1}}/ \kappa } = 0.5$)

    Fig. 3.  Transmission amplitude T of input fields ${\varepsilon _{{\text{p}}1}}$(a) and ${\varepsilon _{{\text{p}}2}}$(b) in different directions as a function of normalized detuning $x/\kappa $ for only a single mechanical oscillator b1 (Other parameters: $\alpha = {{\text{π }}/2}$, ${J/ \kappa } = 1$, ${{{\gamma _1}} / \kappa } = 0.25$, ${G_2} = 0$, ${{{G_1}} / \kappa } = 0.5$)

    图 4  x = 0时, 单向隔离率I 随有效光力耦合强度${G_1}$的变化 (给定的参数: $\alpha = {{\text{π }}/ 2}$, ${J/ \kappa } = 1$, ${G_2} = 0$, ${{{\gamma _1}}/ \kappa } = $$ 0.25$)

    Fig. 4.  Unidirectional isolation rate I at x = 0 versus effective optomechanical coupling strengths ${G_1}$ (The given parameters: $\alpha = {{\text{π }}/ 2}$, ${J / \kappa } = 1$, ${G_2} = 0$, ${{{\gamma _1}} / \kappa } = 0.25$)

    图 5  x = 0时, 单向隔离率I随有效光力耦合强度${G_1}$${G_2}$的变化 (给定的参数: $\alpha = {{\text{π }}/ 2}$, ${J/\kappa } = 1$, ${{{\gamma _1}}/ \kappa } = 0.25$, ${{{\gamma _2}}/ \kappa } = 9$)

    Fig. 5.  Unidirectional isolation rate I at x = 0 versus the effective optomechanical coupling strengths G1 and G2 (The given parameters: $\alpha = {{\text{π }}/ 2}$, ${J/ \kappa } = 1$, ${{{\gamma _1}}/\kappa } = 0.25$, ${{{\gamma _2}}/\kappa } = $$ 9$).

    图 6  透射振幅T和对应的隔离率I随标准化失谐$x/\kappa $的变化 (其他参数与图5相同) (a1) G2 = 0, G1/κ = 0.5; (a2) G2 = 0, G1/κ = 0.3; (b1) G1/κ = 0.3, G2/κ = 2.4; (b2) G1/κ = 0.3, G2/κ = 3.0

    Fig. 6.  Transmission amplitudes T and the corresponding isolation rate I versus normalized detuning $x/\kappa $ (The given parameters are the same as the ones in Fig. 5): (a1) G1/κ = 0.5; (a2) G1/κ = 0.3; (b1) G2/κ = 2.4; (b2) G2/κ = 3.0.

    图 7  透射振幅T和对应的隔离率I随标准化失谐$x/\kappa $的变化 (其他参数: $\alpha = {{\text{π }} / 2}$, ${J /\kappa } = 1$, ${{{\gamma _2}}/ \kappa } = 9$, ${{{G_2}} / \kappa } = 3$) (a1) γ1/κ = 0.01, G1/κ = 0; (a2) γ1/κ = 0.01, G1/κ = 0.3; (b1) γ1 = 0, G1/κ = 0.3; (b2) γ1 = 0, G1/κ = 0.8

    Fig. 7.  Transmission amplitudes T and the corresponding isolation rate I versus normalized detuning $x/\kappa $ (The other parameters are $\alpha = {{\text{π }}/ 2}$, ${J / \kappa } = 1$, ${{{\gamma _2}}/ \kappa } = 9$, ${{{G_2}} / \kappa } = 3$): (a1) γ1/κ = 0.01, G1/κ = 0; (a2) γ1/κ = 0.01, G1/κ = 0.3; (b1) γ1 = 0, G1/κ = 0.3; (b2) γ1 = 0, G1/κ = 0.8.

    图 8  隔离率I随有效光力耦合强度${{{G_1}}/\kappa }$${{{G_2}} / \kappa }$的单峰区及双峰区 (其他参数与图5相同)

    Fig. 8.  Single peak region and double peak region of the isolation rate I versus the effective optomechanical coupling strengths ${{{G_1}} / \kappa }$ and ${{{G_2}} / \kappa }$ (Other parameters are the same as the ones in Fig. 5).

  • [1]

    Xia C C, Yan X B, Tian X D, Gao F 2019 Opt. Commun. 451 197Google Scholar

    [2]

    朱雪松, 刘星雨, 张岩 2022 物理学报 71 150701Google Scholar

    Zhu X S, Liu X Y, Zhang Y 2022 Acta Phys. Sin. 71 150701Google Scholar

    [3]

    Jing Y W 2022 Sci. Rep. 12 5844Google Scholar

    [4]

    Jiang C, Song L N, Li Y 2018 Phys. Rev. A 97 053812Google Scholar

    [5]

    Asadchy V S, Mirmoosa M S, Diaz-Rubio A, Fan S, Tretyakov S A 2020 Proc. IEEE 108 1684Google Scholar

    [6]

    Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [7]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [8]

    Tang J S, Nie W, Tang L, Chen M Y, Su X, Lu Y Q, Nori F, Xia K Y 2022 Phys. Rev. Lett. 128 203602Google Scholar

    [9]

    Hu Y Q, Qi Y H, You Y, Zhang S C, Lin G W, Li X L, Gong J B, Gong S Q, Niu Y P 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [10]

    Peterson C W, Benalcazar W A, Lin M, Hughes T L, Bahl G 2019 Phys. Rev. Lett. 123 063901Google Scholar

    [11]

    Hu X X, Wang Z B, Zhang P F, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T C, Tang H X, Dong C H, Guo G C, Zou C L 2021 Nat. Commun. 12 2389Google Scholar

    [12]

    Liang C, Liu B, Xu A N, Wen X, Lu C C, Xia K Y, Tey M K, Liu Y C, You L 2020 Phys. Rev. Lett. 125 123901Google Scholar

    [13]

    Huang X Y, Lu C C, Liang C, Tao H G, Liu Y C 2021 Light Sci. Appl. 10 30Google Scholar

    [14]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [15]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B, Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [16]

    Peterson G A, Lecocq F, Cicak K, Simmonds R W, Aumentado J, Teufel J D 2017 Phys. Rev. X 7 031001Google Scholar

    [17]

    Tang J D, Cai Q Z, Cheng Z D, Xu N, Peng G Y, Chen P Q, Wang D G, Xia Z W, Wang Y, Song H Z, Zhou Q, Deng G W 2022 Phys. Lett. A 429 127966Google Scholar

    [18]

    刘妮, 王建芬, 梁九卿 2020 物理学报 69 064202Google Scholar

    Liu N, Wang J F, Liang J Q 2020 Acta Phys. Sin. 69 064202Google Scholar

    [19]

    Jiang C, Liu Y L, Sillanpaa M A 2021 Phys. Rev. A 104 013502Google Scholar

    [20]

    Xiao R J, Pan G X, Xiu X M 2021 Chin. Phys. B 30 034209Google Scholar

    [21]

    Yan K X, Zhang Y C, Cui Y S, Jiang C 2020 Opt. Commun. 475 126249Google Scholar

    [22]

    Qu K N, Agarwal G S 2013 Phys. Rev. A 87 63813Google Scholar

    [23]

    He Y 2016 Phys. Rev. A 94 063804Google Scholar

    [24]

    Singh S K, Parvez M, Abbas T, Peng J X, Mazaheri M, Asjad M 2022 Phys. Lett. A 442 128181Google Scholar

    [25]

    Xu X W, Li Y 2015 Phys. Rev. A 91 053854Google Scholar

    [26]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288Google Scholar

    [27]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [28]

    Ullah K 2019 Chin. Phys. B 28 114209Google Scholar

    [29]

    Chen Y T, Du L, Liu Y M, Zhang Y 2020 Opt. Express 28 7095Google Scholar

    [30]

    张利巍, 李贤丽, 杨柳 2019 物理学报 68 170701Google Scholar

    Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar

  • [1] 李观荣, 郑怡婷, 徐琼怡, 裴笑山, 耿玥, 严冬, 杨红. 闭合回路相干增益原子系统中完美非互易反射光放大. 物理学报, 2024, 73(12): 126401. doi: 10.7498/aps.73.20240347
    [2] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, 2022, 71(18): 184202. doi: 10.7498/aps.71.20220506
    [3] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [4] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [5] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [6] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究. 物理学报, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [7] 海莲, 张莎, 李维银, 谭磊. 耦合腔阵列与-型三能级原子非局域耦合系统中单光子的传输特性研究. 物理学报, 2017, 66(15): 154203. doi: 10.7498/aps.66.154203
    [8] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [9] 刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏. 部分相干双曲余弦厄米高斯光束在非Kolmogorov大气湍流中的传输特性. 物理学报, 2015, 64(3): 034208. doi: 10.7498/aps.64.034208
    [10] 陈薪羽, 董渊, 管佳音, 李述涛, 于永吉, 吕彦飞. 湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究. 物理学报, 2014, 63(16): 164208. doi: 10.7498/aps.63.164208
    [11] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [12] 阮存军, 王树忠, 韩莹, 李庆生. 高传输通过率带状电子注聚焦与传输特性的研究. 物理学报, 2011, 60(8): 084105. doi: 10.7498/aps.60.084105
    [13] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究. 物理学报, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [14] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [15] 谌雄文, 施振刚, 谌宝菊, 宋克慧. T型耦合双量子点系统的非对等Kondo共振分裂传输. 物理学报, 2008, 57(4): 2421-2426. doi: 10.7498/aps.57.2421
    [16] 肖 毅, 郭 旗, 杨湘波, 兰 胜. 双曲正割光束在弱非局域非线性体材料中的传输特性研究. 物理学报, 2008, 57(6): 3553-3561. doi: 10.7498/aps.57.3553
    [17] 郑宏军, 刘山亮, 黎 昕, 徐静平. 初始啁啾对双曲正割光脉冲线性传输特性的影响. 物理学报, 2007, 56(4): 2286-2292. doi: 10.7498/aps.56.2286
    [18] 曹觉能, 郭 旗. 不同非局域程度条件下空间光孤子的传输特性. 物理学报, 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [19] 张立辉, 李高翔, 彭金生. 位相损耗腔中简并双光子拉曼耦合系统中的熵特性. 物理学报, 2002, 51(3): 541-546. doi: 10.7498/aps.51.541
    [20] 龚尚庆, 徐至展, 潘少华, 杨国桢. 利用带模型探讨染料环形腔系统的光学双稳特性. 物理学报, 1994, 43(12): 1979-1986. doi: 10.7498/aps.43.1979
计量
  • 文章访问数:  4029
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2022-12-26
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-20

/

返回文章
返回