搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子碰撞中QCD物质整体极化的实验测量

孙旭 周晨升 陈金辉 陈震宇 马余刚 唐爱洪 徐庆华

引用本文:
Citation:

重离子碰撞中QCD物质整体极化的实验测量

孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华

Measurements of global polarization of QCD matter in heavy-ion collisions

Sun Xu, Zhou Chen-Sheng, Chen Jin-Hui, Chen Zhen-Yu, Ma Yu-Gang, Tang Ai-Hong, Xu Qing-Hua
PDF
HTML
导出引用
  • 高能重离子碰撞中Λ超子和ϕ, K*0矢量介子的整体极化的实验数据证实了夸克物质整体极化的新现象, 引起了研究人员的广泛关注, 成为高能核物理前沿新的热点研究方向. 本文主要从实验测量上回顾整体极化研究, 着重阐述相对论重离子对撞机(RHIC)上的螺旋径迹探测器(STAR)合作组在不同对撞能量点开展的Λ超子和ϕ, K*0介子的整体极化测量结果, 并拓展到含有多个奇异夸克粒子Ξ, Ω的整体极化测量和Λ沿着束流方向的局域极化研究. 本文也将简单点评大型强子对撞机(LHC)能区和HADES实验低能区的测量结果, 并对这些实验结果给出的物理信息进行简单描述.
    The experimental data of the global polarization of Λ hyperon, ϕ and K*0 vector mesons in high-energy heavy ion collision confirm the new phenomenon of global polarization of hot-dense QCD matter, which has attracted extensive attention from researchers and has become a new hot research direction in the frontier of high-energy nuclear physics. This paper reviews the recent global polarization measurements. We focus on the global polarization measurements of Λ hyperon and ϕ, K*0 mesons, carried out by the solenoidal tracker detector (STAR) collaboration group at the Relativistic Heavy Ion Collider (RHIC) at its Phase I of Beam Energy Scan program, and extend to the global polarization measurements containing multiple strange quark particles, such as Ξ, Ω and the local polarization studies of Λ along the beam direction. In the paper, we also briefly comment on the measurements at higher energy from the large hadron collider (LHC) and at very low energy in HADES experiment. In the end of the paper, the physical information given by these experimental results is also briefly discussed.
      通信作者: 陈金辉, chenjinhui@fudan.edu.cn ; 徐庆华, xuqh@sdu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1604900)、中国科学院战略性先导科技专项(B类)(批准号: XDB34030000)和国家自然科学基金(批准号: 11890710, 12025501, 12147101)资助的课题
      Corresponding author: Chen Jin-Hui, chenjinhui@fudan.edu.cn ; Xu Qing-Hua, xuqh@sdu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022FYA1604900), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34030000) and the National Natural Science Foundation of China (Grant Nos. 11890710, 12025501, 12147101).
    [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301; 96 039901(E)

    [2]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [3]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2007 Phys. Rev. C 76 024915; 95 039906(E)

    [4]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2008 Phys. Rev. C 77 061902(R)

    [5]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2017 Nature 548 62Google Scholar

    [6]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2023 Nature 614 244Google Scholar

    [7]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2018 Phys. Rev. C 98 014910Google Scholar

    [8]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) 2020 Phys. Rev. C 101 044611; 105 029902

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [10]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. C 104 L061901Google Scholar

    [11]

    Yassine R, Arnold O, Becker M, et al. (HADES Collaboration). 2022 Phys. Lett. B 835 137506Google Scholar

    [12]

    Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [13]

    Li H, Pang L G, Wang Q, Xia X L 2017 Phys. Rev. C 96 054908Google Scholar

    [14]

    Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar

    [15]

    Karpenko I, Becattini F 2017 Eur. Phys. J. C 77 213Google Scholar

    [16]

    Vitiuk O, Bravina L, Zabrodin E, 2020 Phys. Lett. B 803 135298Google Scholar

    [17]

    Guo Y, Liao J, Wang E, Xing H, Zhang H 2021 Phys. Rev. C 104 L041902Google Scholar

    [18]

    Ivanov Y 2021 Phys. Rev. C 103 L031903Google Scholar

    [19]

    Deng X G, Huang X G, Ma Y G, Zhang S 2020 Phys. Rev. C 101 064908Google Scholar

    [20]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [21]

    Liang Z T, Song J, Upsal I Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [22]

    Deng X G, Huang X G, Ma Y G 2022 Phys. Lett. B 835 137560Google Scholar

    [23]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005; 105 099903(E)

    [24]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [25]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2205.15689

    [26]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2206.05868

    [27]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [28]

    Lin, Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [29]

    Shao T H, Chen J H, Ko C M, Sun K J, Xu Z B 2020 Chin. Phys. C 44 114001Google Scholar

    [30]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [31]

    Chen J H, Keane D, Ma Y G, Tang A H, Xu Z B 2018 Phys. Rept. 760 1Google Scholar

    [32]

    Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar

    [33]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar

    [34]

    Workman R L et al. (Particle Data Group). 2022 PTEP 2022 083C01

    [35]

    Poskanzer A M, Voloshin S A 1998 Phys. Rev. C 58 1671Google Scholar

    [36]

    Becattini F, Karpenko I 2018 Phys. Rev. Lett. 120 012302Google Scholar

    [37]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [38]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [39]

    Fu B C, Liu S, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [40]

    Tang A H, Tu B, Zhou C S 2018 Phys. Rev. C 98 044907Google Scholar

    [41]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [42]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502Google Scholar

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502Google Scholar

    [43]

    Shen D Y, Chen J H, Lin Z W 2021 Chin. Phys. C 45 054002Google Scholar

    [44]

    Li Z Y, Cha W M, Tang Z B 2022 Phys. Rev. C 106 064908Google Scholar

    [45]

    杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar

    Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. Astron. 49 102008Google Scholar

    [46]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) arXiv: 2204.10171

  • 图 1  不同能量下非对心核-核碰撞中Λ, $\bar{{{\Lambda }}}$超子的整体极化测量结果

    Fig. 1.  Global polarization of Lambda and anti-Lambda hyperon in non-central nuclear-nuclear collisions at different energies.

    图 2  200 GeV金核-金核碰撞中不同碰撞中心度下Λ, $\bar{{{\Lambda }}}$超子整体极化[7]

    Fig. 2.  $ {{\Lambda }} $ and $\bar{{{\Lambda }}}$ global polarization as a function of the collision centrality in Au+Au collisions at $ \sqrt {{S_{{\text{NN}}}}} $ = 200 GeV[7].

    图 3  200 GeV金核-金核碰撞中Λ, $\bar{{{\Lambda }}}$整体极化随赝快度η(a)和横动量pT(b)的变化[7].

    Fig. 3.  Polarization of Λ, $ \stackrel{-}{{{\Lambda }}} $ as a function of η (a) and pT (b) for the 20%—60% centrality bin in Au+Au collisions at $ \sqrt {{S_{{\text{NN}}}}} $= 200 GeV[7].

    图 4  200 GeV金核-金核碰撞中Ξ和Ω超子整体极化的测量结果, 以及与Λ结果的比较[9]

    Fig. 4.  Global polarization of Ξ and Ω in Au-Au collisions at 200 GeV, and compared with Λ polarization[9].

    图 5  非对心重离子碰撞横平面中速度场和涡旋示意图[37]. z轴方向为束流方向, x-z平面为反应平面

    Fig. 5.  A sketch illustrating the system created in a noncentral heavy-ion collision viewed in the transverse plane. Velocity field and expected vorticities are shown, the colliding beams are along the z axis and z-x plane defines the reaction plane.

    图 6  200 GeV金核-金核碰撞20%—60%中心度事例中Λ超子和其反粒子的$ {\left\langle{{\rm{cos}}{\theta }_{{\rm{p}}}^{*}}\right\rangle}^{{\rm{s}}{\rm{u}}{\rm{b}}} $关于$\phi -{\varPsi }_{2}$的依赖[37]

    Fig. 6.  $ {\left\langle{{\rm{cos}}{\theta }_{{\rm{p}}}^{*}}\right\rangle}^{{\rm{s}}{\rm{u}}{\rm{b}}} $ of Lambda and anti-Lambda as a function of azimuthal angle $\phi$ relative to the second-order event plane $ {\varPsi }_{2} $ for 20%—60% centrality Au+Au collisions at 200  GeV[37].

    图 7  Λ超子和其反粒子沿束流方向的局域极化在200 GeV金核-金核碰撞及5.02 TeV铅核-铅核碰撞中随中心度的变化[37,38]

    Fig. 7.  Centrality dependence of $ {P}_{z, s2} $ averaged for Lambda and anti-Lambda in Pb+Pb collisions at 5.02 TeV and in Au+Au collisions at 200 GeV[37,38].

    图 8  Λ超子和其反粒子沿束流方向的局域极化在20%—50%中心度200 GeV金核-金核碰撞及30%—50%中心度5.02 TeV铅核-铅核碰撞中随横动量的变化[37,38]

    Fig. 8.  Transverse momentum dependence of $ {P}_{z, {\rm{s}}2} $ averaged for Lambda and anti-Lambda in Pb+Pb collisions at 5.02 TeV and in Au+Au collisions at 200 GeV[37,38].

    图 9  Λ超子和其反粒子沿束流方向的局域极化在30%—50%中心度5.02 TeV铅核-铅核碰撞中随快度的变化[38]

    Fig. 9.  The rapidity dependence of $ {P}_{z, {\rm{s}}2} $ averaged for Lambda and anti-Lambda in Pb+Pb collisions at 5.02 TeV in the centrality interval of 30%—50% [38].

    图 10  相对论重离子碰撞中ϕ和K*0信号分布示例 (a)和(b) θ*空间积分分布; (c)和(d) θ*微分分布[6]

    Fig. 10.  Example of ϕ and K*0 distributions in Au+Au collisions at relativistic heavy-ion collider: (a) and (b) Examples of invariant mass distributions; (c) and (d) the extracted yields as a function of cosθ*[6].

    图 11  束流能量扫描实验中和高统计量200 GeV金核-金核碰撞中ϕ介子ρ00随其横向动量的分布[6]

    Fig. 11.  ρ00 as a function of transverse momentum for ϕ-meson for beam-energy scan energies and for the high statistics 200 GeV data[6].

    图 12  束流能量扫描实验中和高统计量200 GeV金核-金核碰撞中K*0介子ρ00随其横向动量的分布[6]

    Fig. 12.  ρ00 as a function of transverse momentum for K*0 for beam-energy scan energies and for the high statistics 200 GeV data[6].

    图 13  相对论重离子碰撞中ϕ和K*0整体极化测量结果[6]. 图中实心数据点来自STAR测量, 空心点是从ALICE实验中选出和STAR数据的动量区间, 中心度区间最接近的测量. 红色实心线是π介子场局域涨落理论对实验数据的拟合, 红色虚线则是该拟合外延到LHC能区[41]

    Fig. 13.  Measurements of ϕ and K*0 global spin alignment in heavy-ion collisions[6]. Solid points are data from STAR measurement, open symbols indicate ALICE results with the pT bin nearest to the mean pT for the 1.0–5.0 GeV/c range assumed for each meson in the STAR analysis. The red solid line is the fitting of the local fluctuation theory of the π meson field to the experimental data, and the red dotted line is the extension of the fitting to the LHC energy region [41].

    图 14  重离子碰撞中ϕ和K*0介子ρ00随碰撞系统中心度的分布,对于ϕ介子的测量也检验了一阶反应平面分析方法[6]

    Fig. 14.  ρ00 as a function of centrality for ϕ and K*0, and for the ϕ meson analysis, results from first order event plane are also carried out for cross check[6].

  • [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301; 96 039901(E)

    [2]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [3]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2007 Phys. Rev. C 76 024915; 95 039906(E)

    [4]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2008 Phys. Rev. C 77 061902(R)

    [5]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2017 Nature 548 62Google Scholar

    [6]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2023 Nature 614 244Google Scholar

    [7]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2018 Phys. Rev. C 98 014910Google Scholar

    [8]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) 2020 Phys. Rev. C 101 044611; 105 029902

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [10]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. C 104 L061901Google Scholar

    [11]

    Yassine R, Arnold O, Becker M, et al. (HADES Collaboration). 2022 Phys. Lett. B 835 137506Google Scholar

    [12]

    Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [13]

    Li H, Pang L G, Wang Q, Xia X L 2017 Phys. Rev. C 96 054908Google Scholar

    [14]

    Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar

    [15]

    Karpenko I, Becattini F 2017 Eur. Phys. J. C 77 213Google Scholar

    [16]

    Vitiuk O, Bravina L, Zabrodin E, 2020 Phys. Lett. B 803 135298Google Scholar

    [17]

    Guo Y, Liao J, Wang E, Xing H, Zhang H 2021 Phys. Rev. C 104 L041902Google Scholar

    [18]

    Ivanov Y 2021 Phys. Rev. C 103 L031903Google Scholar

    [19]

    Deng X G, Huang X G, Ma Y G, Zhang S 2020 Phys. Rev. C 101 064908Google Scholar

    [20]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [21]

    Liang Z T, Song J, Upsal I Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [22]

    Deng X G, Huang X G, Ma Y G 2022 Phys. Lett. B 835 137560Google Scholar

    [23]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005; 105 099903(E)

    [24]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [25]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2205.15689

    [26]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2206.05868

    [27]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [28]

    Lin, Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [29]

    Shao T H, Chen J H, Ko C M, Sun K J, Xu Z B 2020 Chin. Phys. C 44 114001Google Scholar

    [30]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [31]

    Chen J H, Keane D, Ma Y G, Tang A H, Xu Z B 2018 Phys. Rept. 760 1Google Scholar

    [32]

    Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar

    [33]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar

    [34]

    Workman R L et al. (Particle Data Group). 2022 PTEP 2022 083C01

    [35]

    Poskanzer A M, Voloshin S A 1998 Phys. Rev. C 58 1671Google Scholar

    [36]

    Becattini F, Karpenko I 2018 Phys. Rev. Lett. 120 012302Google Scholar

    [37]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [38]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [39]

    Fu B C, Liu S, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [40]

    Tang A H, Tu B, Zhou C S 2018 Phys. Rev. C 98 044907Google Scholar

    [41]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [42]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502Google Scholar

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502Google Scholar

    [43]

    Shen D Y, Chen J H, Lin Z W 2021 Chin. Phys. C 45 054002Google Scholar

    [44]

    Li Z Y, Cha W M, Tang Z B 2022 Phys. Rev. C 106 064908Google Scholar

    [45]

    杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar

    Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. Astron. 49 102008Google Scholar

    [46]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) arXiv: 2204.10171

  • [1] 谢浈, 李景行, 郑华, 张文超, 朱励霖, 刘星泉, 谭志光, 周代梅, BonaseraAldo. 高能重离子碰撞中心快度区鉴别粒子的平均横动量. 物理学报, 2024, 73(18): 181201. doi: 10.7498/aps.73.20240905
    [2] 刘鹤, 初鹏程. 相对论重离子碰撞中π介子椭圆流劈裂. 物理学报, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [3] 浦实, 肖博文, 周剑, 周雅瑾. 高能重离子超边缘碰撞中极化光致反应. 物理学报, 2023, 72(7): 072503. doi: 10.7498/aps.72.20230074
    [4] 江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威. RHIC能区Au+Au 碰撞中带电粒子直接流与超子整体极化的计算与分析. 物理学报, 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [5] 林树, 田家源. 引力形状因子的介质修正. 物理学报, 2023, 72(7): 071201. doi: 10.7498/aps.72.20222473
    [6] 阮丽娟, 许长补, 杨驰. 夸克物质中的超子整体极化与矢量介子自旋排列. 物理学报, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [7] 盛欣力, 梁作堂, 王群. 重离子碰撞中的矢量介子自旋排列. 物理学报, 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [8] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [9] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [10] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [11] 刘建业, 郝焕锋, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的介质效应. 物理学报, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [12] 卞宝安, 周宏余, 张丰收. 核物质对称能和重离子碰撞中径向流阈能的同位旋效应. 物理学报, 2007, 56(3): 1334-1338. doi: 10.7498/aps.56.1334
    [13] 张 芳, 左 维, 雍高产. 利用中-质微分流探测对称能的高密行为. 物理学报, 2006, 55(11): 5769-5773. doi: 10.7498/aps.55.5769
    [14] 刘建业, 邢永忠, 郭文军. 同位旋依赖的动量相关作用对同位旋分馏的影响随入射道条件的演化. 物理学报, 2006, 55(1): 91-97. doi: 10.7498/aps.55.91
    [15] 刘建业, 郭文军, 邢永忠, 李希国, 左 维. 中能重离子碰撞中晕核反应动力学. 物理学报, 2006, 55(3): 1068-1076. doi: 10.7498/aps.55.1068
    [16] 雍高产, 李宝安, 陈列文, 左 维. 重离子碰撞中的对称势翻转. 物理学报, 2006, 55(10): 5166-5171. doi: 10.7498/aps.55.5166
    [17] 郭文军, 刘建业, 邢永忠. 同位旋依赖的动量相关作用对同位旋分馏过程的影响和机理. 物理学报, 2005, 54(7): 3082-3086. doi: 10.7498/aps.54.3082
    [18] 姜志进. 带电多重数赝快度密度对碰撞对心度依赖关系研究. 物理学报, 2004, 53(4): 1020-1022. doi: 10.7498/aps.53.1020
    [19] 习金华, 吴礼金. 原子实极化效应对ScⅡ离子3d2三重态超精细相互作用的影响. 物理学报, 1992, 41(3): 370-378. doi: 10.7498/aps.41.370
    [20] 侯氢, 李家明. 自旋极化电子与Xe原子的弹性碰撞. 物理学报, 1992, 41(9): 1424-1430. doi: 10.7498/aps.41.1424
计量
  • 文章访问数:  5295
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-01-30
  • 上网日期:  2023-02-17
  • 刊出日期:  2023-04-05

/

返回文章
返回