-
高能重离子碰撞中Λ超子和ϕ, K*0矢量介子的整体极化的实验数据证实了夸克物质整体极化的新现象, 引起了研究人员的广泛关注, 成为高能核物理前沿新的热点研究方向. 本文主要从实验测量上回顾整体极化研究, 着重阐述相对论重离子对撞机(RHIC)上的螺旋径迹探测器(STAR)合作组在不同对撞能量点开展的Λ超子和ϕ, K*0介子的整体极化测量结果, 并拓展到含有多个奇异夸克粒子Ξ, Ω的整体极化测量和Λ沿着束流方向的局域极化研究. 本文也将简单点评大型强子对撞机(LHC)能区和HADES实验低能区的测量结果, 并对这些实验结果给出的物理信息进行简单描述.The experimental data of the global polarization of Λ hyperon, ϕ and K*0 vector mesons in high-energy heavy ion collision confirm the new phenomenon of global polarization of hot-dense QCD matter, which has attracted extensive attention from researchers and has become a new hot research direction in the frontier of high-energy nuclear physics. This paper reviews the recent global polarization measurements. We focus on the global polarization measurements of Λ hyperon and ϕ, K*0 mesons, carried out by the solenoidal tracker detector (STAR) collaboration group at the Relativistic Heavy Ion Collider (RHIC) at its Phase I of Beam Energy Scan program, and extend to the global polarization measurements containing multiple strange quark particles, such as Ξ, Ω and the local polarization studies of Λ along the beam direction. In the paper, we also briefly comment on the measurements at higher energy from the large hadron collider (LHC) and at very low energy in HADES experiment. In the end of the paper, the physical information given by these experimental results is also briefly discussed.
-
Keywords:
- heavy-ion collision /
- global polarization /
- hyperon polarization /
- vector meson spin alignment
[1] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301; 96 039901(E)
[2] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar
[3] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2007 Phys. Rev. C 76 024915; 95 039906(E)
[4] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2008 Phys. Rev. C 77 061902(R)
[5] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2017 Nature 548 62Google Scholar
[6] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2023 Nature 614 244Google Scholar
[7] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2018 Phys. Rev. C 98 014910Google Scholar
[8] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) 2020 Phys. Rev. C 101 044611; 105 029902
[9] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. Lett. 126 162301Google Scholar
[10] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. C 104 L061901Google Scholar
[11] Yassine R, Arnold O, Becker M, et al. (HADES Collaboration). 2022 Phys. Lett. B 835 137506Google Scholar
[12] Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar
[13] Li H, Pang L G, Wang Q, Xia X L 2017 Phys. Rev. C 96 054908Google Scholar
[14] Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar
[15] Karpenko I, Becattini F 2017 Eur. Phys. J. C 77 213Google Scholar
[16] Vitiuk O, Bravina L, Zabrodin E, 2020 Phys. Lett. B 803 135298Google Scholar
[17] Guo Y, Liao J, Wang E, Xing H, Zhang H 2021 Phys. Rev. C 104 L041902Google Scholar
[18] Ivanov Y 2021 Phys. Rev. C 103 L031903Google Scholar
[19] Deng X G, Huang X G, Ma Y G, Zhang S 2020 Phys. Rev. C 101 064908Google Scholar
[20] Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar
[21] Liang Z T, Song J, Upsal I Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar
[22] Deng X G, Huang X G, Ma Y G 2022 Phys. Lett. B 835 137560Google Scholar
[23] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005; 105 099903(E)
[24] Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar
[25] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2205.15689
[26] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2206.05868
[27] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar
[28] Lin, Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar
[29] Shao T H, Chen J H, Ko C M, Sun K J, Xu Z B 2020 Chin. Phys. C 44 114001Google Scholar
[30] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar
[31] Chen J H, Keane D, Ma Y G, Tang A H, Xu Z B 2018 Phys. Rept. 760 1Google Scholar
[32] Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar
[33] 高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar
Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar
[34] Workman R L et al. (Particle Data Group). 2022 PTEP 2022 083C01
[35] Poskanzer A M, Voloshin S A 1998 Phys. Rev. C 58 1671Google Scholar
[36] Becattini F, Karpenko I 2018 Phys. Rev. Lett. 120 012302Google Scholar
[37] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2019 Phys. Rev. Lett. 123 132301Google Scholar
[38] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2022 Phys. Rev. Lett. 128 172005Google Scholar
[39] Fu B C, Liu S, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar
[40] Tang A H, Tu B, Zhou C S 2018 Phys. Rev. C 98 044907Google Scholar
[41] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2020 Phys. Rev. Lett. 125 012301Google Scholar
[42] 盛欣力, 梁作堂, 王群 2023 物理学报 72 072502Google Scholar
Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502Google Scholar
[43] Shen D Y, Chen J H, Lin Z W 2021 Chin. Phys. C 45 054002Google Scholar
[44] Li Z Y, Cha W M, Tang Z B 2022 Phys. Rev. C 106 064908Google Scholar
[45] 杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar
Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. Astron. 49 102008Google Scholar
[46] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) arXiv: 2204.10171
-
图 5 非对心重离子碰撞横平面中速度场和涡旋示意图[37]. z轴方向为束流方向, x-z平面为反应平面
Fig. 5. A sketch illustrating the system created in a noncentral heavy-ion collision viewed in the transverse plane. Velocity field and expected vorticities are shown, the colliding beams are along the z axis and z-x plane defines the reaction plane.
图 6 200 GeV金核-金核碰撞20%—60%中心度事例中Λ超子和其反粒子的
$ {\left\langle{{\rm{cos}}{\theta }_{{\rm{p}}}^{*}}\right\rangle}^{{\rm{s}}{\rm{u}}{\rm{b}}} $ 关于$\phi -{\varPsi }_{2}$ 的依赖[37]Fig. 6.
$ {\left\langle{{\rm{cos}}{\theta }_{{\rm{p}}}^{*}}\right\rangle}^{{\rm{s}}{\rm{u}}{\rm{b}}} $ of Lambda and anti-Lambda as a function of azimuthal angle$\phi$ relative to the second-order event plane$ {\varPsi }_{2} $ for 20%—60% centrality Au+Au collisions at 200 GeV[37].图 13 相对论重离子碰撞中ϕ和K*0整体极化测量结果[6]. 图中实心数据点来自STAR测量, 空心点是从ALICE实验中选出和STAR数据的动量区间, 中心度区间最接近的测量. 红色实心线是π介子场局域涨落理论对实验数据的拟合, 红色虚线则是该拟合外延到LHC能区[41]
Fig. 13. Measurements of ϕ and K*0 global spin alignment in heavy-ion collisions[6]. Solid points are data from STAR measurement, open symbols indicate ALICE results with the pT bin nearest to the mean pT for the 1.0–5.0 GeV/c range assumed for each meson in the STAR analysis. The red solid line is the fitting of the local fluctuation theory of the π meson field to the experimental data, and the red dotted line is the extension of the fitting to the LHC energy region [41].
-
[1] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301; 96 039901(E)
[2] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar
[3] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2007 Phys. Rev. C 76 024915; 95 039906(E)
[4] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2008 Phys. Rev. C 77 061902(R)
[5] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2017 Nature 548 62Google Scholar
[6] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2023 Nature 614 244Google Scholar
[7] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2018 Phys. Rev. C 98 014910Google Scholar
[8] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) 2020 Phys. Rev. C 101 044611; 105 029902
[9] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. Lett. 126 162301Google Scholar
[10] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. C 104 L061901Google Scholar
[11] Yassine R, Arnold O, Becker M, et al. (HADES Collaboration). 2022 Phys. Lett. B 835 137506Google Scholar
[12] Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar
[13] Li H, Pang L G, Wang Q, Xia X L 2017 Phys. Rev. C 96 054908Google Scholar
[14] Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar
[15] Karpenko I, Becattini F 2017 Eur. Phys. J. C 77 213Google Scholar
[16] Vitiuk O, Bravina L, Zabrodin E, 2020 Phys. Lett. B 803 135298Google Scholar
[17] Guo Y, Liao J, Wang E, Xing H, Zhang H 2021 Phys. Rev. C 104 L041902Google Scholar
[18] Ivanov Y 2021 Phys. Rev. C 103 L031903Google Scholar
[19] Deng X G, Huang X G, Ma Y G, Zhang S 2020 Phys. Rev. C 101 064908Google Scholar
[20] Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar
[21] Liang Z T, Song J, Upsal I Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar
[22] Deng X G, Huang X G, Ma Y G 2022 Phys. Lett. B 835 137560Google Scholar
[23] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005; 105 099903(E)
[24] Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar
[25] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2205.15689
[26] Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2206.05868
[27] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar
[28] Lin, Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar
[29] Shao T H, Chen J H, Ko C M, Sun K J, Xu Z B 2020 Chin. Phys. C 44 114001Google Scholar
[30] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar
[31] Chen J H, Keane D, Ma Y G, Tang A H, Xu Z B 2018 Phys. Rept. 760 1Google Scholar
[32] Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar
[33] 高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar
Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar
[34] Workman R L et al. (Particle Data Group). 2022 PTEP 2022 083C01
[35] Poskanzer A M, Voloshin S A 1998 Phys. Rev. C 58 1671Google Scholar
[36] Becattini F, Karpenko I 2018 Phys. Rev. Lett. 120 012302Google Scholar
[37] Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2019 Phys. Rev. Lett. 123 132301Google Scholar
[38] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2022 Phys. Rev. Lett. 128 172005Google Scholar
[39] Fu B C, Liu S, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar
[40] Tang A H, Tu B, Zhou C S 2018 Phys. Rev. C 98 044907Google Scholar
[41] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2020 Phys. Rev. Lett. 125 012301Google Scholar
[42] 盛欣力, 梁作堂, 王群 2023 物理学报 72 072502Google Scholar
Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502Google Scholar
[43] Shen D Y, Chen J H, Lin Z W 2021 Chin. Phys. C 45 054002Google Scholar
[44] Li Z Y, Cha W M, Tang Z B 2022 Phys. Rev. C 106 064908Google Scholar
[45] 杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar
Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. Astron. 49 102008Google Scholar
[46] Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) arXiv: 2204.10171
计量
- 文章访问数: 4952
- PDF下载量: 152
- 被引次数: 0