搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

费米子的相对论自旋输运理论

高建华 盛欣力 王群 庄鹏飞

引用本文:
Citation:

费米子的相对论自旋输运理论

高建华, 盛欣力, 王群, 庄鹏飞

Relativistic spin transport theory for spin-1/2 fermions

Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在重离子碰撞中, 自旋轨道耦合可以导致整体极化现象. 自从2017年, STAR工作中发现超子$\Lambda$在Au+Au碰撞中的整体极化, 整体极化效应引起了学术界的广泛关注. 整体极化效应的微观产生机制可以利用粒子之间非定域的散射过程来描述:在重离子碰撞中产生了热密物质, 热密物质中的粒子之间通过非定域的碰撞过程实现了轨道角动量向自旋角动量的转换, 从而导致散射后的粒子自旋极化. 为了描述这一微观过程, 在相空间描述自旋轨道耦合更加方便, 而自旋轨道耦合又是一种量子效应, 所以基于协变维格纳函数的量子动理学理论将是描述整体极化现象的有力工具. 本文介绍了基于维格纳函数的量子动理学理论以及自旋输运理论. 近期自旋输运理论的发展为以后数值模拟自旋极化现象的时空演化提供了理论基础.
    Global polarization effect is an important physical phenomenon reflecting spin-orbit couplings in heavy ion collisions. Since STAR’s observation of the global polarization of $\Lambda$ hyperons in Au+Au collisions in 2017, this effect has attracted a lot of interests in the field. In the hot and dense matter produced in heavy ion collisions, the spin-orbit couplings come from non-local collisions between particles, in which the orbital angular momentum involves the space and momentum information of the colliding particles, so it is necessary to describe the particle collisions with spin-orbit couplings in phase space. In addition, the spin-orbit coupling is a quantum effect, which requires quantum theory. In combination of two aspects, the quantum kinetic theory based on covariant Wigner functions has become a powerful tool to describe the global polarization effect. In this paper, we introduce the quantum kinetic theory for spin-1/2 Fermion system based on Wigner functions as well as the spin transport theory developed on this basis. The recent research progress of spin transport theory provides a solid theoretical foundation for simulating the space-time evolution of spin polarization effects in heavy ion collisions.
      通信作者: 高建华, gaojh@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11890710, 11890713, 12175123, 12135011)资助的课题
      Corresponding author: Gao Jian-Hua, gaojh@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11890710, 11890713, 12175123, 12135011)
    [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 (Erratum: Phys. Rev. Lett. 96 039901)

    [2]

    Adamczyk L, et al. [STAR Collaboration]. 2017 Nature 548 62

    [3]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [4]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [5]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [6]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [7]

    Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar

    [8]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [9]

    Becattini F, Florkowski W, Speranza E 2019 Phys. Lett. B 789 419Google Scholar

    [10]

    Becattini F, Buzzegoli M, Grossi E 2019 Particles 2 197Google Scholar

    [11]

    Fang R H, Pang L G, Wang Q, Wang X N 2016 Phys. Rev. C 94 024904Google Scholar

    [12]

    Gao J H, Liang Z T 2019 Phys. Rev. D 100 056021Google Scholar

    [13]

    Weickgenannt N, Sheng X L, Speranza E, Wang Q, Rischke D H 2019 Phys. Rev. D 100 056018Google Scholar

    [14]

    Wang Z, Guo X, Shi S, Zhuang P 2019 Phys. Rev. D 100 014015

    [15]

    Hattori K, Hidaka Y, Yang D L 2019 Phys. Rev. D 100 096011Google Scholar

    [16]

    Liu Y C, Mameda K, Huang X G 2020 Chin. Phys. C 44 094101 [Erratum: 2021 Chin. Phys. C 45 089001]

    [17]

    Sheng X L, Wang Q, Huang X G 2020 Phys. Rev. D 102 025019

    [18]

    Yang D L, Hattori K, Hidaka Y 2020 JHEP 07 070

    [19]

    Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar

    [20]

    Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. D 104 016022Google Scholar

    [21]

    Sheng X L, Weickgenannt N, Speranza E, Rischke D H, Wang Q 2021 Phys. Rev. D 104 016029Google Scholar

    [22]

    Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar

    [23]

    Florkowski W, Friman B, Jaiswal A, Ryblewski R, Speranza E 2018 Phys. Rev. D 97 116017Google Scholar

    [24]

    Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar

    [25]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H Y 2021 JHEP 11 150

    [26]

    Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar

    [27]

    Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281

    [28]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [29]

    Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar

    [30]

    Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167

    [31]

    Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar

    [32]

    Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

    [33]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [34]

    Stephanov M A, Yin Y 2012 Phys. Rev. Lett. 109 162001Google Scholar

    [35]

    Son D T, Yamamoto N 2013 Phys. Rev. D 87 085016Google Scholar

    [36]

    Chen J W, Pu S, Wang Q, Wang X N 2013 Phys. Rev. Lett. 110 262301Google Scholar

    [37]

    Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 89 096002Google Scholar

    [38]

    Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 90 076007Google Scholar

    [39]

    Chen J Y, Son D T, Stephanov M A, Yee H U, Yin Y 2014 Phys. Rev. Lett. 113 182302Google Scholar

    [40]

    Chen J Y, Son D T, Stephanov M A 2015 Phys. Rev. Lett. 115 021601Google Scholar

    [41]

    Hidaka Y, Pu S, Yang D L 2017 Phys. Rev. D 95 091901Google Scholar

    [42]

    Mueller N, Venugopalan R 2018 Phys. Rev. D 97 051901Google Scholar

    [43]

    Huang A, Shi S, Jiang Y, Liao J, Zhuang P 2018 Phys. Rev. D 98 036010Google Scholar

    [44]

    Gao J H, Liang Z T, Wang Q, Wang X N 2018 Phys. Rev. D 98 036019Google Scholar

    [45]

    Liu Y C, Gao L L, Mameda K, Huang X G 2019 Phys. Rev. D 99 085014Google Scholar

    [46]

    Sun Y, Ko C M, Li F 2016 Phys. Rev. C 94 045204

    [47]

    Sun Y, Ko C M 2017 Phys. Rev. C 95 034909Google Scholar

    [48]

    Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar

    [49]

    Sun Y, Ko C M 2018 Phys. Rev. C 98 014911

    [50]

    Sun Y, Ko C M 2019 Phys. Rev. C 99 011903Google Scholar

    [51]

    Zhou W H, Xu J 2018 Phys. Rev. C 98 044904Google Scholar

    [52]

    Zhou W H, Xu J 2019 Phys. Lett. B 798 134932Google Scholar

    [53]

    Liu S Y F, Sun Y, Ko C M 2020 Phys. Rev. Lett. 125 062301Google Scholar

    [54]

    Wigner E P 1932 Phys. Rev. 40 749Google Scholar

    [55]

    Heinz U W 1983 Phys. Rev. Lett. 51 351Google Scholar

    [56]

    Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706Google Scholar

    [57]

    Elze H T, Gyulassy M, Vasak D 1987 Annals Phys. 173 462Google Scholar

    [58]

    Bialynicki-Birula I, Davis E D, Rafelski J 1993 Phys. Lett. B 311 329Google Scholar

    [59]

    Zhuang P F, Heinz U W 1998 Phys. Rev. D 57 6525Google Scholar

    [60]

    Guo X 2020 Chin. Phys. C 44 104106Google Scholar

    [61]

    Ma S X, Gao J H 2022 arXiv: 2209.10737[hep-ph]

    [62]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904

    [63]

    Martin P C, Schwinger J S 1959 Phys. Rev. 115 1342Google Scholar

    [64]

    Keldysh L V 1964 Zh. Eksp. Thero. Fiz. 47 1515

    [65]

    Fang S, Pu S, Yang D L 2022 Phys. Rev. D 106 016002Google Scholar

    [66]

    Wang Z, Guo X, Zhuang P 2021 Eur. Phys. J. C 81 799Google Scholar

    [67]

    Sheng X L, Wang Q, Rischke D H 2022 Phys. Rev. D 106 L111901Google Scholar

    [68]

    Wang Z, Zhuang P 2021 arXiv: 2105.00915

    [69]

    Gao J H, Qi B, Wang S Y 2014 Phys. Rev. D 90 083001Google Scholar

    [70]

    Wu H Z, Pang L G, Huang X G, Wang Q 2019 Phys. Rev. Rese. 1 033058

    [71]

    Lin S 2022 Phys. Rev. D 105 076017Google Scholar

    [72]

    Yang D L 2022 JHEP 06 140

  • [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 (Erratum: Phys. Rev. Lett. 96 039901)

    [2]

    Adamczyk L, et al. [STAR Collaboration]. 2017 Nature 548 62

    [3]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [4]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [5]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [6]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [7]

    Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar

    [8]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [9]

    Becattini F, Florkowski W, Speranza E 2019 Phys. Lett. B 789 419Google Scholar

    [10]

    Becattini F, Buzzegoli M, Grossi E 2019 Particles 2 197Google Scholar

    [11]

    Fang R H, Pang L G, Wang Q, Wang X N 2016 Phys. Rev. C 94 024904Google Scholar

    [12]

    Gao J H, Liang Z T 2019 Phys. Rev. D 100 056021Google Scholar

    [13]

    Weickgenannt N, Sheng X L, Speranza E, Wang Q, Rischke D H 2019 Phys. Rev. D 100 056018Google Scholar

    [14]

    Wang Z, Guo X, Shi S, Zhuang P 2019 Phys. Rev. D 100 014015

    [15]

    Hattori K, Hidaka Y, Yang D L 2019 Phys. Rev. D 100 096011Google Scholar

    [16]

    Liu Y C, Mameda K, Huang X G 2020 Chin. Phys. C 44 094101 [Erratum: 2021 Chin. Phys. C 45 089001]

    [17]

    Sheng X L, Wang Q, Huang X G 2020 Phys. Rev. D 102 025019

    [18]

    Yang D L, Hattori K, Hidaka Y 2020 JHEP 07 070

    [19]

    Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar

    [20]

    Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. D 104 016022Google Scholar

    [21]

    Sheng X L, Weickgenannt N, Speranza E, Rischke D H, Wang Q 2021 Phys. Rev. D 104 016029Google Scholar

    [22]

    Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar

    [23]

    Florkowski W, Friman B, Jaiswal A, Ryblewski R, Speranza E 2018 Phys. Rev. D 97 116017Google Scholar

    [24]

    Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar

    [25]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H Y 2021 JHEP 11 150

    [26]

    Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar

    [27]

    Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281

    [28]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [29]

    Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar

    [30]

    Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167

    [31]

    Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar

    [32]

    Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

    [33]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [34]

    Stephanov M A, Yin Y 2012 Phys. Rev. Lett. 109 162001Google Scholar

    [35]

    Son D T, Yamamoto N 2013 Phys. Rev. D 87 085016Google Scholar

    [36]

    Chen J W, Pu S, Wang Q, Wang X N 2013 Phys. Rev. Lett. 110 262301Google Scholar

    [37]

    Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 89 096002Google Scholar

    [38]

    Manuel C, Torres-Rincon J M 2014 Phys. Rev. D 90 076007Google Scholar

    [39]

    Chen J Y, Son D T, Stephanov M A, Yee H U, Yin Y 2014 Phys. Rev. Lett. 113 182302Google Scholar

    [40]

    Chen J Y, Son D T, Stephanov M A 2015 Phys. Rev. Lett. 115 021601Google Scholar

    [41]

    Hidaka Y, Pu S, Yang D L 2017 Phys. Rev. D 95 091901Google Scholar

    [42]

    Mueller N, Venugopalan R 2018 Phys. Rev. D 97 051901Google Scholar

    [43]

    Huang A, Shi S, Jiang Y, Liao J, Zhuang P 2018 Phys. Rev. D 98 036010Google Scholar

    [44]

    Gao J H, Liang Z T, Wang Q, Wang X N 2018 Phys. Rev. D 98 036019Google Scholar

    [45]

    Liu Y C, Gao L L, Mameda K, Huang X G 2019 Phys. Rev. D 99 085014Google Scholar

    [46]

    Sun Y, Ko C M, Li F 2016 Phys. Rev. C 94 045204

    [47]

    Sun Y, Ko C M 2017 Phys. Rev. C 95 034909Google Scholar

    [48]

    Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar

    [49]

    Sun Y, Ko C M 2018 Phys. Rev. C 98 014911

    [50]

    Sun Y, Ko C M 2019 Phys. Rev. C 99 011903Google Scholar

    [51]

    Zhou W H, Xu J 2018 Phys. Rev. C 98 044904Google Scholar

    [52]

    Zhou W H, Xu J 2019 Phys. Lett. B 798 134932Google Scholar

    [53]

    Liu S Y F, Sun Y, Ko C M 2020 Phys. Rev. Lett. 125 062301Google Scholar

    [54]

    Wigner E P 1932 Phys. Rev. 40 749Google Scholar

    [55]

    Heinz U W 1983 Phys. Rev. Lett. 51 351Google Scholar

    [56]

    Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706Google Scholar

    [57]

    Elze H T, Gyulassy M, Vasak D 1987 Annals Phys. 173 462Google Scholar

    [58]

    Bialynicki-Birula I, Davis E D, Rafelski J 1993 Phys. Lett. B 311 329Google Scholar

    [59]

    Zhuang P F, Heinz U W 1998 Phys. Rev. D 57 6525Google Scholar

    [60]

    Guo X 2020 Chin. Phys. C 44 104106Google Scholar

    [61]

    Ma S X, Gao J H 2022 arXiv: 2209.10737[hep-ph]

    [62]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904

    [63]

    Martin P C, Schwinger J S 1959 Phys. Rev. 115 1342Google Scholar

    [64]

    Keldysh L V 1964 Zh. Eksp. Thero. Fiz. 47 1515

    [65]

    Fang S, Pu S, Yang D L 2022 Phys. Rev. D 106 016002Google Scholar

    [66]

    Wang Z, Guo X, Zhuang P 2021 Eur. Phys. J. C 81 799Google Scholar

    [67]

    Sheng X L, Wang Q, Rischke D H 2022 Phys. Rev. D 106 L111901Google Scholar

    [68]

    Wang Z, Zhuang P 2021 arXiv: 2105.00915

    [69]

    Gao J H, Qi B, Wang S Y 2014 Phys. Rev. D 90 083001Google Scholar

    [70]

    Wu H Z, Pang L G, Huang X G, Wang Q 2019 Phys. Rev. Rese. 1 033058

    [71]

    Lin S 2022 Phys. Rev. D 105 076017Google Scholar

    [72]

    Yang D L 2022 JHEP 06 140

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] 邓小松, 张志勇, 康宁. 基于一维电子体系的超导复合器件和量子输运研究. 物理学报, 2025, 74(6): . doi: 10.7498/aps.74.20241672
    [3] 罗晓丽, 高建华. 嘉当韦尔基下的非阿贝尔手征动理学方程. 物理学报, 2023, 72(11): 112503. doi: 10.7498/aps.72.20222471
    [4] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [5] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究. 物理学报, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [6] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [7] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究. 物理学报, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [8] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [9] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运. 物理学报, 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [10] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [11] 闻远辉, 陈钰杰, 余思远. 基于焦散线方法的自加速光束设计. 物理学报, 2017, 66(14): 144210. doi: 10.7498/aps.66.144210
    [12] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [13] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究. 物理学报, 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [14] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质. 物理学报, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [15] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [16] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [17] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [18] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
    [19] 董正超, 盛利, 邢定钰, 董锦明. 金属薄膜的量子输运理论. 物理学报, 1997, 46(3): 568-578. doi: 10.7498/aps.46.568
    [20] 易林, 姚凯伦. 自旋玻璃系统的量子输运方程. 物理学报, 1994, 43(6): 1024-1028. doi: 10.7498/aps.43.1024
计量
  • 文章访问数:  4332
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 修回日期:  2023-03-25
  • 上网日期:  2023-04-04
  • 刊出日期:  2023-06-05

/

返回文章
返回