搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变调控下Tl2Ta2O7中的拓扑相变

徐诗琳 胡岳芳 袁丹文 陈巍 张薇

引用本文:
Citation:

应变调控下Tl2Ta2O7中的拓扑相变

徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇

Topological phase transitions in Tl2Ta2O7 under strain regulation

Xu Shi-Lin, Hu Yue-Fang, Yuan Dan-Wen, Chen Wei, Zhang Wei
PDF
HTML
导出引用
  • 拓扑电子材料因为具有非平庸的拓扑态, 所以会展现出许多奇异的物理性质. 本文通过第一性原理计算对应变调控下的烧绿石三元氧化物Tl2Ta2O7 中的拓扑相变进行了研究. 首先分析了原子轨道投影能带, 发现体系费米能级附近O原子的(px + py) 与pz 轨道发生了能带反转, 再构造了紧束缚模型计算得到体系的Z2 拓扑不变量确定了其拓扑非平庸性, 最后研究了表面态等拓扑性质. 研究发现未施加应变的Tl2Ta2O7是一个在费米能级处具有二次能带交叉点的半金属, 而平面内应变会破缺晶体对称性进而使体系发生拓扑相变. 当对体系施加–1%的压缩应变时, 它会转变为狄拉克半金属; 当对体系施加1%的拉伸应变时, 体系相变为拓扑绝缘体. 本研究对于在三维材料中调控拓扑相变有着较重要的指导意义, 并且为低能耗电子器件的设计提供了良好的材料平台.
    Topological electronic materials exhibit many novel physical properties, such as low dissipation transport and high carrier mobility. These extraordinary properties originate from their non-trivial topological electronic structures in momentum space. In recent years, topological phase transitions based on topological electronic materials have gradually become one of the hot topics in condensed matter physics. Using first-principles calculations, we explore the topological phase transitions driven by in-plane strain in ternary pyrochlore oxide Tl2Ta2O7. Firstly, we analyze the atomic-orbital-resolved band structure and find that the O (px+py) and pz orbitals of the system near the Fermi level have band inversion, indicating the emergence of topological phase transitions in the system. Then the tight-binding models are constructed to calculate the Z2 topological invariants, which can determine the topologically non-trivial feature of the system. Finally, topological properties such as surface states and a three-dimensional Dirac cone are studied. It is found that Tl2Ta2O7 without strain is a semimetal with a quadratic band touching point at Fermi level, while the in-plane strain can drive the topological phase transition via breaking crystalline symmetries. When the system is under the –1% in-plane compression strain and without considering the spin orbit coupling (SOC), the application of strain results in two triply degenerate nodal points formed in the –Z to Γ direction and Γ to Z direction, respectively. When the SOC is included, there are two fourfold degenerate Dirac points on the –Z to Γ path and Γ to Z path, respectively. Thus, the –1% in-plane compression strain makes the system transit from the quadratic contact point semimetal to a Dirac semimetal. When 1% in-plane expansion strain is applied and the SOC is neglected, there exists one band intersection along Y→Γ. When the SOC is taken into consideration, the gap is opened. Therefore, the 1% in-plane expansion strain drives Tl2Ta2O7 into a strong topological insulator. In addition, the system is also expected to have strong correlation effect and superconductivity due to the possible flat band. This work can guide the study of topological phase transitions in three-dimensional materials and provide a good material platform for the design of low-dissipation electronic devices.
      通信作者: 陈巍, chenwei@fjnu.edu.cn ; 张薇, zhangw721@163.com
    • 基金项目: 国家自然科学基金(批准号: 11974076)、光合基金A类(批准号: 202302019222)、福建省自然科学基金重点项目(批准号: 2021J02012)和福建师范大学碳中和研究院研究基金(批准号: TZH2022-05)资助的课题.
      Corresponding author: Chen Wei, chenwei@fjnu.edu.cn ; Zhang Wei, zhangw721@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974076), the GH Fund A (Grant No. 202302019222), the Key Project of Natural Science Foundation of Fujian Province, China (Grant No. 2021J02012), and the Research Foundation of the Academy of Carbon Neutrality of Fujian Normal University, China (Grant No. TZH2022-05).
    [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜 2020 物理学报 69 200704Google Scholar

    Wang H T, Zhao H H, Wen L G, Wu X J, Nie T X, Zhao W S 2020 Acta Phys. Sin. 69 200704Google Scholar

    [3]

    Tian W, Yu W, Shi J, Wang Y 2017 Materials 10 814Google Scholar

    [4]

    Lü H, Wang Z, Cheng Q, Zhang W, Yu R 2021 Phys. Rev. B 103 L241115Google Scholar

    [5]

    Hu J, Xu S Y, Ni N, Mao Z 2019 Annu. Rev. Mater. Res. 49 207Google Scholar

    [6]

    Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D, Chai G L 2018 Phys. Rev. B 98 115411Google Scholar

    [7]

    Chen Z, Hu Y, Zhu Z, Zhang W 2020 New J. Phys. 22 093055Google Scholar

    [8]

    Yuan D, Hu Y, Yang Y, Zhang W 2021 Chin. Phys. Lett. 38 117301Google Scholar

    [9]

    Ferreira P P, Manesco A L R, Dorini T T, et al. 2021 Phys. Rev. B 103 125134Google Scholar

    [10]

    Cao W, Tang P, Xu Y, Wu J, Gu B L, Duan W 2017 Phys. Rev. B 96 115203Google Scholar

    [11]

    Jitta R R, Gundeboina R, Veldurthi N K, Guje R, Muga V 2015 J. Chem. Technol. Biot. 90 1937Google Scholar

    [12]

    Kim M, Park J, Kang M, Kim J Y, Lee S W 2020 ACS Cent. Sci. 6 880Google Scholar

    [13]

    Yang B J, Kim Y B 2010 Phys. Rev. B 82 085111Google Scholar

    [14]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [15]

    Sakata M, Kagayama T, Shimizu K, Matsuhira K, Takagi S, Wakeshima M, Hinatsu Y 2011 Phys. Rev. B 83 041102(RGoogle Scholar

    [16]

    Hase I, Yanagisawa T 2020 Symmetry 12 1076Google Scholar

    [17]

    Das M, Bhowal S, Sannigrahi J, et al. 2022 Phys. Rev. B 105 134421Google Scholar

    [18]

    Hu Y, Yue C, Yuan D, et al. 2022 Sci. China Phys. Mech. Astron. 65 297211Google Scholar

    [19]

    Zhang W, Luo K, Chen Z, Zhu Z, Yu R, Fang C, Weng H 2019 npj Comput. Mater. 5 105Google Scholar

    [20]

    Hase I, Yanagisawa T, Kawashima K 2019 Nanomaterials 9 876Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [27]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [28]

    Wu Q, Zhang S, Song H F, Troyer M, Soluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [29]

    杜永平, 刘慧美, 万贤纲 2015 物理学报 64 187201Google Scholar

    Du Y P, Liu H M, Wan X G 2015 Acta Phys. Sin. 64 187201Google Scholar

    [30]

    Sheng X L, Wang Z, Yu R, Weng H, Fang Z, Dai X 2014 Phys. Rev. B 90 245308Google Scholar

    [31]

    Wang Z, Weng H, Wu Q, et al. 2013 Phys. Rev. B 88 125427Google Scholar

    [32]

    Cvetkovic V, Vafek O 2013 Phys. Rev. B 88 134510Google Scholar

    [33]

    Yakovkin I N, Petrova N V 2021 Phys. Lett. A 403 127398Google Scholar

    [34]

    Liu M Y, Gong L, He Y, Cao C 2021 Phys. Rev. B 103 075421Google Scholar

    [35]

    Yalameha S, Nourbakhsh Z, Vaez A 2018 J. Magn. Magn. Mater. 468 279Google Scholar

    [36]

    Zhang Q, Cheng Y, Schwingenschlögl U 2013 Phys. Rev. B 88 155317Google Scholar

    [37]

    Yu R, Qi X, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119Google Scholar

    [38]

    Grusdt F, Abanin D, Demler E 2014 Phys. Rev. A 89 043621Google Scholar

    [39]

    Qi X L, Zhang S C 2010 Phys. Today 63 33Google Scholar

  • 图 1  (a) Tl2Ta2O7的原胞; (b) 体结构第一布里渊区及(100)表面布里渊区示意图

    Fig. 1.  (a) Primitive unit cell of Tl2Ta2O7; (b) schematic of the bulk first Brillouin zone (BZ) and projected surface BZ for (100) surface

    图 2  Tl2Ta2O7的能带结构 (a) 未施加应变时, 不考虑SOC(黑色实线)和考虑SOC(红色虚线)时的能带结构; (b) Γ点费米能级附近能带的放大图. SOC相互作用下体系的轨道分辨能带图 (c) 未施加应变; (d) 应变为–1% (平面内压缩); (e) 应变为1% (平面内拉伸)

    Fig. 2.  Band structures of Tl2Ta2O7 system: (a) Non-SOC (black solid lines) and SOC (red dashed lines) band structures without strain; (b) the zoom-in band structure around Γ point near the Fermi level. SOC orbital-resolved band structure: (c) Without strain; (d) with strain of –1% (in-plane compression); (e) with strain of 1% (in-plane expansion).

    图 3  考虑SOC时, 施加–1% (平面内压缩)应变的Tl2Ta2O7 (100) 表面的拓扑性质 (a) 狄拉克点和拓扑表面态(右图为费米能级附近的放大图); (b) 狄拉克锥三维立体图

    Fig. 3.  Topological properties of Tl2Ta2O7 with SOC on (100) surface under –1% (in-plane compression) strain: (a) Dirac point and topological surface states (The right panel shows the enlarged image near the Fermi level); (b) three-dimensional display of the Dirac cone.

    图 4  考虑SOC时, 施加1% (平面内拉伸)应变的Tl2Ta2O7 (100)表面的拓扑性质 (a) g3 = 0平面和(b) g3 = π平面Wannier电荷中心(WCC)的演化, g1, 2, 3是原胞的倒格子基矢. Wannier中心(黑线)与参考线(红线)在g3 = 0平面上相交1次, 而在g3 = π平面上相交0次. (c) 拓扑表面态及其费米能级附近的放大图

    Fig. 4.  Topological properties of Tl2Ta2O7 with SOC on (100) surface under 1% (in-plane expansion) strain. Evolution of the Wannier charge centers (WCC) in (a) g3 = 0 plane and (b) g3 = π plane, where g1, 2, 3 are reciprocal vectors of the primitive lattice. The WCC (black lines) cross the reference line (red line) once in the g3 = 0 plane and zero times in the g3 = π plane. (c) Topological surface states. The right panel shows the enlarged image near the Fermi level.

  • [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜 2020 物理学报 69 200704Google Scholar

    Wang H T, Zhao H H, Wen L G, Wu X J, Nie T X, Zhao W S 2020 Acta Phys. Sin. 69 200704Google Scholar

    [3]

    Tian W, Yu W, Shi J, Wang Y 2017 Materials 10 814Google Scholar

    [4]

    Lü H, Wang Z, Cheng Q, Zhang W, Yu R 2021 Phys. Rev. B 103 L241115Google Scholar

    [5]

    Hu J, Xu S Y, Ni N, Mao Z 2019 Annu. Rev. Mater. Res. 49 207Google Scholar

    [6]

    Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D, Chai G L 2018 Phys. Rev. B 98 115411Google Scholar

    [7]

    Chen Z, Hu Y, Zhu Z, Zhang W 2020 New J. Phys. 22 093055Google Scholar

    [8]

    Yuan D, Hu Y, Yang Y, Zhang W 2021 Chin. Phys. Lett. 38 117301Google Scholar

    [9]

    Ferreira P P, Manesco A L R, Dorini T T, et al. 2021 Phys. Rev. B 103 125134Google Scholar

    [10]

    Cao W, Tang P, Xu Y, Wu J, Gu B L, Duan W 2017 Phys. Rev. B 96 115203Google Scholar

    [11]

    Jitta R R, Gundeboina R, Veldurthi N K, Guje R, Muga V 2015 J. Chem. Technol. Biot. 90 1937Google Scholar

    [12]

    Kim M, Park J, Kang M, Kim J Y, Lee S W 2020 ACS Cent. Sci. 6 880Google Scholar

    [13]

    Yang B J, Kim Y B 2010 Phys. Rev. B 82 085111Google Scholar

    [14]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [15]

    Sakata M, Kagayama T, Shimizu K, Matsuhira K, Takagi S, Wakeshima M, Hinatsu Y 2011 Phys. Rev. B 83 041102(RGoogle Scholar

    [16]

    Hase I, Yanagisawa T 2020 Symmetry 12 1076Google Scholar

    [17]

    Das M, Bhowal S, Sannigrahi J, et al. 2022 Phys. Rev. B 105 134421Google Scholar

    [18]

    Hu Y, Yue C, Yuan D, et al. 2022 Sci. China Phys. Mech. Astron. 65 297211Google Scholar

    [19]

    Zhang W, Luo K, Chen Z, Zhu Z, Yu R, Fang C, Weng H 2019 npj Comput. Mater. 5 105Google Scholar

    [20]

    Hase I, Yanagisawa T, Kawashima K 2019 Nanomaterials 9 876Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [27]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [28]

    Wu Q, Zhang S, Song H F, Troyer M, Soluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [29]

    杜永平, 刘慧美, 万贤纲 2015 物理学报 64 187201Google Scholar

    Du Y P, Liu H M, Wan X G 2015 Acta Phys. Sin. 64 187201Google Scholar

    [30]

    Sheng X L, Wang Z, Yu R, Weng H, Fang Z, Dai X 2014 Phys. Rev. B 90 245308Google Scholar

    [31]

    Wang Z, Weng H, Wu Q, et al. 2013 Phys. Rev. B 88 125427Google Scholar

    [32]

    Cvetkovic V, Vafek O 2013 Phys. Rev. B 88 134510Google Scholar

    [33]

    Yakovkin I N, Petrova N V 2021 Phys. Lett. A 403 127398Google Scholar

    [34]

    Liu M Y, Gong L, He Y, Cao C 2021 Phys. Rev. B 103 075421Google Scholar

    [35]

    Yalameha S, Nourbakhsh Z, Vaez A 2018 J. Magn. Magn. Mater. 468 279Google Scholar

    [36]

    Zhang Q, Cheng Y, Schwingenschlögl U 2013 Phys. Rev. B 88 155317Google Scholar

    [37]

    Yu R, Qi X, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119Google Scholar

    [38]

    Grusdt F, Abanin D, Demler E 2014 Phys. Rev. A 89 043621Google Scholar

    [39]

    Qi X L, Zhang S C 2010 Phys. Today 63 33Google Scholar

  • [1] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [4] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [5] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [6] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [7] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [8] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [9] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [10] 敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起. 三维拓扑绝缘体antidot阵列结构中的磁致输运研究. 物理学报, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [11] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [12] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [13] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [14] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [15] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [16] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [17] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [19] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [20] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
计量
  • 文章访问数:  3404
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-09
  • 修回日期:  2023-03-31
  • 上网日期:  2023-04-24
  • 刊出日期:  2023-06-20

/

返回文章
返回