搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高综合性能超导纳米线单光子探测器

郗玲玲 杨晓燕 张天柱 肖游 尤立星 李浩

引用本文:
Citation:

高综合性能超导纳米线单光子探测器

郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩

High comprehensive performance superconducting nanowire single photon detector

Xi Ling-Ling, Yang Xiao-Yan, Zhang Tian-Zhu, Xiao You, You Li-Xing, Li Hao
PDF
HTML
导出引用
  • 超导纳米线单光子探测器(SNSPD)优异的时间特性(时间抖动和响应速度)是其最具吸引力的优势之一, 并且已在量子通信、量子计算等领域中得到广泛应用. 然而, 由于SNSPD的各技术参数之间相互牵制, 使得进一步提升SNSPD综合性能存在技术挑战. 小光敏面SNSPD在时间特性上具有明显优势, 但同时存在探测效率低的突出问题. 本文为面向量子信息应用的光纤耦合探测器, 从开发实用化、产品化SNSPD出发, 采用批量对准、高效耦合的自对准封装结构, 围绕小光敏面自对准SNSPD综合性能的提升展开研究. 采用发散小、易刻蚀的Au/SiO2光学腔, 在提高纳米线光吸收效率的同时通过优化自对准芯片外轮廓加工精度的方式来提高自对准SNSPD的光耦合效率, 并完成了配套的工艺研发. 并通过小芯径光纤从器件封装角度提升耦合效率. 除此之外, 探测器的双层纳米线结构使其拥有更低的动态电感和更高的超导转变电流, 进一步优化了器件的时间特性. 实验制备的探测器在2.2 K温度下于1310 nm处达到最大效率82%, 并且在1200—1600 nm波长范围内均有65%以上的系统探测效率, 同时表现出40 MHz@3 dB的计数率以及38 ps的时间抖动. 进一步, 利用低温放大器读出系统可得到最小22 ps的时间抖动. 本文研制的高综合性能超导单光子探测器, 为实用化、产品化SNSPD提供了重要的技术参考.
    Superconducting nanowire single photon detector (SNSPD) has been widely used in quantum communication, quantum computing and other fields because of its excellent timing jitter and response speed. However, due to the mutual restraint of the technical parameters of SNSPD nanowires, there are technical challenges to further improve the comprehensive performance of SNSPD, and thus limiting its application on a large scale. Combining high detection efficiency with high timing performance is still an outstanding challenge. In this work, we report the SNSPD with 12-μm small active area, which has high speed, high efficiency, low jitter and broadband absorption. Au/SiO2 membrane cavity, which is determined by finite element analysis simulation, is used to widen the optical response bandwidth. And it is easier to process and improve the alignment accuracy at the same time. The flat substrate is more conducive to the growth of superconducting thin films, so flattening process is introduced. Device package is also optimized to match smaller detector. Self-aligned packaging makes optical alignment more convenient and time-saving. Special optical fibers with small mode-field diameters can reduce the negative effect of the detector on optical coupling. The detector can achieve a maximum SDE of 82% at the central wavelength of 1310 nm and the temperature of 2.2 K, and the SDE of more than 65% in the wavelength range of 1200–1600 nm, with DCR of 70 cps. The detector also exhibits a count rate of 40 MHz@3 dB and a timing jitter of 38 ps, which is significantly improved compared with 23-μm active area detector. Furthermore, the minimum timing jitter of 22 ps can be obtained by using cryogenic amplifier readout. In this work, high comprehensive performance detector is developed, which provides an important technical reference for practical and product SNSPD.
      通信作者: 杨晓燕, yxy@mail.sim.ac.cn ; 李浩, lihao@mail.sim.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61971408, 61827823, 12033007)、上海市青年科技启明星项目(批准号: 20QA1410900)和中国科学院青年创新促进会项目(批准号: 2020241)资助的课题
      Corresponding author: Yang Xiao-Yan, yxy@mail.sim.ac.cn ; Li Hao, lihao@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971408, 61827823, 12033007), Shanghai Rising-Star Program (Grant No. 20QA1410900), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020241).
    [1]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China-Phys. Mech. Astron. 60 1

    [2]

    Zhang W J, Yang X Y, Li H, You L X, Lv C L, Zhang L, Zhang C J, Liu X Y, Wang Z, Xie X M 2018 Supercond. Sci. Technol. 31 035012Google Scholar

    [3]

    Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar

    [4]

    Esmaeil Z I, Los J W N, Gourgues R B M, Chang J, Elshaari A W, Zichi J R, van Staaden Y J, Swens J P E, Kalhor N, Guardiani A, Meng Y, Zou K, Dobrovolskiy S, Fognini A W, Schaart D R, Dalacu D, Poole P J, Reimer M E, Hu X, Pereira S F, Zwiller V, Dorenbos S N 2020 ACS Photon. 7 1780Google Scholar

    [5]

    Khatri F I, Robinson B S, Semprucci M D, Boroson D M 2015 Acta Astronaut. 111 77Google Scholar

    [6]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [7]

    Zhang B, Guan Y Q, Xia L, Dong D, Chen Q, Xu C, Wu C, Huang H, Zhang L, Kang L, Chen J, Wu P 2021 Supercond. Sci. Tech. 34 034005Google Scholar

    [8]

    You L 2020 Nanophotonics 9 2673Google Scholar

    [9]

    孙伟, 贾小氢, 涂学凑, 赵清源, 张蜡宝, 康琳, 陈健, 吴培亨 2022 低温与超导 50 9Google Scholar

    Sun W, Jia X H, Tu X C, Zhao Q Y, Zhang L B, Kang L, Chen J, Wu P H 2022 Cryog. Supercond. 50 9Google Scholar

    [10]

    Calandri N, Zhao Q Y, Zhu D, Dane A, Berggren K K 2016 Appl. Phys. Lett. 109 152601Google Scholar

    [11]

    Semenov A, Günther B, Böttger U, Hübers H W, Bartolf H, Engel A, Schilling A, Ilin K, Siegel M, Schneider R, Gerthsen D, Gippius N A 2009 Phys. Rev. B 80 054510Google Scholar

    [12]

    Banerjee A, Heath R M, Morozov D, Hemakumara D, Nasti U, Thayne I, Hadfield R H 2018 Opt. Mater. Express 8 2072Google Scholar

    [13]

    Gol’tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [14]

    Semenov A, Engel A, Hubers H W, Il'in K, Siegel M 2005 Eur. Phys. J. B 47 495Google Scholar

    [15]

    Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M, Berggren K K 2007 IEEE Trans. Appl. Supercon. 17 581Google Scholar

    [16]

    Kerman A J, Yang J K W, Molnar R J, Dauler E A, Berggren K K 2009 Phys. Rev. B 79 100509Google Scholar

    [17]

    Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol’tsman G, Voronov B 2006 Appl. Phys. Lett. 88 111116Google Scholar

    [18]

    Allmaras J P, Kozorezov A G, Korzh B A, Berggren K K, Shaw M D 2019 Phys. Rev. Appl. 11 034062Google Scholar

    [19]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [20]

    Chang J, Los J W N, Tenorio P J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar

    [21]

    Meng Y, Zou K, Hu N, Xu L, Lan X, Steinhauer S, Gyger S, Zwiller V, Hu X J 2020 arXiv: 2012.06730

    [22]

    Miki S, Yamashita T, Fujiwara M, Sasaki M, Wang Z 2010 Opt. Lett. 35 2133Google Scholar

    [23]

    Miller A J, Lita A E, Calkins B, Vayshenker I, Gruber S M, Nam S W 2011 Opt. Express 19 9102Google Scholar

    [24]

    Zadeh I E, Los J W N, Gourgues R B M, Steinmetz V, Bulgarini G, Dobrovolskiy S M, Zwiller V, Dorenbos S N 2017 APL Photonics 2 111301Google Scholar

    [25]

    Hu P, Li H, You L, Wang H, Xiao Y, Huang J, Yang X, Zhang W, Wang Z, Xie X 2020 Opt. Express 28 36884Google Scholar

    [26]

    耿荣鑫, 李浩, 黄佳, 胡鹏, 肖游, 余慧勤, 尤立星 2021 激光与光电子学进展 58 285Google Scholar

    Geng R X, Li H, Huang J, Hu P, Xiao Y, Yu H Q, You L X 2021 Laser Optoelectron. Pro. 58 285Google Scholar

  • 图 1  (a) 器件仿真模型; (b) 3种不同结构的纳米线在入射光800—2000 nm波段的光吸收仿真情况

    Fig. 1.  (a) Device simulation model; (b) the optical absorption simulation of three kinds of nanowires with different structures at 800–2000 nm wavelength of incident light.

    图 2  器件加工工艺流程图 (i) 通过磁控溅射法生长Ti/Au/Ti金属镜; (ii) 光刻后通过IBE法刻蚀金属镜; (iii) 采用PECVD法生长SiO2层; (iv) 光刻后采用RIE法刻蚀SiO2层; (v) 对SiO2进行化学机械抛光; (vi) 通过磁控溅射法生长上下两层NbN薄膜, PECVD法生长中间SiO2夹层, 并通过EBL曝光、RIE刻蚀制备纳米线条; (vii) 光刻后通过RIE法刻蚀NbN制备电极; (viii) 光刻后通过RIE法刻蚀SiO2阻挡层、ICP法刻蚀Si衬底获得自对准芯片

    Fig. 2.  Process flow chart (i) Ti/Au/Ti metal mirror is grown by magnetron sputtering; (ii) metal mirror is etched by the IBE process after lithography; (iii) SiO2 layer is grown by PECVD process; (iv) SiO2 layer is etched by RIE process after lithography; (v) chemical mechanical polishing of SiO2 layer; (vi) the upper and lower NbN layers are grown by magnetron sputtering, and the intermediate SiO2 layer is grown by PECVD process, and the nanowires are prepared by EBL exposure and RIE etching. (vii) the electrode is prepared by etching the NbN by RIE process after lithography; (viii) SiO2 layer is etched by RIE process and Si substrate is etched by ICP process after lithography to obtain self-aligned chips.

    图 3  (a) 器件光敏面SEM图; (b) 高度放大的NbN纳米线SEM图; (c)器件横截面TEM图

    Fig. 3.  (a) SEM image of the active area of the device; (b) SEM image zoomed in on the NbN nanowires; (c) TEM image of the cross section of the nanowires.

    图 4  封装好的探测器芯片放置在恒温器的4 K冷台上

    Fig. 4.  The packaged chips are mounted on the 4 K cold plate.

    图 5  (a) 器件探测效率和暗计数率随偏置电流的变化曲线; (b) 器件在入射光1064—1600 nm波段的探测效率

    Fig. 5.  (a) SDE and DCR as a function of the bias currents; (b) SDE of the device at 1064–1600 nm.

    图 6  (a) 12 μm光敏面器件和23 μm光敏面器件响应波形和恢复时间; (b) 12 μm光敏面器件和23 μm光敏面器件归一化探测效率随入射光子数的变化曲线

    Fig. 6.  (a) Response waveform and recovery time of 12 μm active area device and 23 μm active area device; (b) curves of normalized detection efficiency of 12 μm active area device and 23 μm pactive area device with the number of incident photons.

    图 7  采用室温放大器放大输出信号时23 μm光敏面器件(蓝)、12 μm光敏面器件(红)的时间抖动与采用低温放大器放大输出信号时12 μm光敏面器件(黑)的时间抖动

    Fig. 7.  The timing jitter of 23 μm active area device (blue) and 12 μm active area device (red) when the output signal was amplified by room temperature amplifier respectively, and the timing jitter of 12 μm active area device (black) when the output signal was amplified by cryogenic amplifier.

  • [1]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China-Phys. Mech. Astron. 60 1

    [2]

    Zhang W J, Yang X Y, Li H, You L X, Lv C L, Zhang L, Zhang C J, Liu X Y, Wang Z, Xie X M 2018 Supercond. Sci. Technol. 31 035012Google Scholar

    [3]

    Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar

    [4]

    Esmaeil Z I, Los J W N, Gourgues R B M, Chang J, Elshaari A W, Zichi J R, van Staaden Y J, Swens J P E, Kalhor N, Guardiani A, Meng Y, Zou K, Dobrovolskiy S, Fognini A W, Schaart D R, Dalacu D, Poole P J, Reimer M E, Hu X, Pereira S F, Zwiller V, Dorenbos S N 2020 ACS Photon. 7 1780Google Scholar

    [5]

    Khatri F I, Robinson B S, Semprucci M D, Boroson D M 2015 Acta Astronaut. 111 77Google Scholar

    [6]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [7]

    Zhang B, Guan Y Q, Xia L, Dong D, Chen Q, Xu C, Wu C, Huang H, Zhang L, Kang L, Chen J, Wu P 2021 Supercond. Sci. Tech. 34 034005Google Scholar

    [8]

    You L 2020 Nanophotonics 9 2673Google Scholar

    [9]

    孙伟, 贾小氢, 涂学凑, 赵清源, 张蜡宝, 康琳, 陈健, 吴培亨 2022 低温与超导 50 9Google Scholar

    Sun W, Jia X H, Tu X C, Zhao Q Y, Zhang L B, Kang L, Chen J, Wu P H 2022 Cryog. Supercond. 50 9Google Scholar

    [10]

    Calandri N, Zhao Q Y, Zhu D, Dane A, Berggren K K 2016 Appl. Phys. Lett. 109 152601Google Scholar

    [11]

    Semenov A, Günther B, Böttger U, Hübers H W, Bartolf H, Engel A, Schilling A, Ilin K, Siegel M, Schneider R, Gerthsen D, Gippius N A 2009 Phys. Rev. B 80 054510Google Scholar

    [12]

    Banerjee A, Heath R M, Morozov D, Hemakumara D, Nasti U, Thayne I, Hadfield R H 2018 Opt. Mater. Express 8 2072Google Scholar

    [13]

    Gol’tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [14]

    Semenov A, Engel A, Hubers H W, Il'in K, Siegel M 2005 Eur. Phys. J. B 47 495Google Scholar

    [15]

    Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M, Berggren K K 2007 IEEE Trans. Appl. Supercon. 17 581Google Scholar

    [16]

    Kerman A J, Yang J K W, Molnar R J, Dauler E A, Berggren K K 2009 Phys. Rev. B 79 100509Google Scholar

    [17]

    Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol’tsman G, Voronov B 2006 Appl. Phys. Lett. 88 111116Google Scholar

    [18]

    Allmaras J P, Kozorezov A G, Korzh B A, Berggren K K, Shaw M D 2019 Phys. Rev. Appl. 11 034062Google Scholar

    [19]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [20]

    Chang J, Los J W N, Tenorio P J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar

    [21]

    Meng Y, Zou K, Hu N, Xu L, Lan X, Steinhauer S, Gyger S, Zwiller V, Hu X J 2020 arXiv: 2012.06730

    [22]

    Miki S, Yamashita T, Fujiwara M, Sasaki M, Wang Z 2010 Opt. Lett. 35 2133Google Scholar

    [23]

    Miller A J, Lita A E, Calkins B, Vayshenker I, Gruber S M, Nam S W 2011 Opt. Express 19 9102Google Scholar

    [24]

    Zadeh I E, Los J W N, Gourgues R B M, Steinmetz V, Bulgarini G, Dobrovolskiy S M, Zwiller V, Dorenbos S N 2017 APL Photonics 2 111301Google Scholar

    [25]

    Hu P, Li H, You L, Wang H, Xiao Y, Huang J, Yang X, Zhang W, Wang Z, Xie X 2020 Opt. Express 28 36884Google Scholar

    [26]

    耿荣鑫, 李浩, 黄佳, 胡鹏, 肖游, 余慧勤, 尤立星 2021 激光与光电子学进展 58 285Google Scholar

    Geng R X, Li H, Huang J, Hu P, Xiao Y, Yu H Q, You L X 2021 Laser Optoelectron. Pro. 58 285Google Scholar

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路. 物理学报, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [4] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [5] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [7] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器. 物理学报, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [8] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [9] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器. 物理学报, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [10] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展. 物理学报, 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [11] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [12] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [13] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究. 物理学报, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [14] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [15] 霍文娟, 谢红云, 梁松, 张万荣, 江之韵, 陈翔, 鲁东. 单载流子传输的双异质结光敏晶体管探测器的研究. 物理学报, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [16] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究. 物理学报, 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [17] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [18] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [19] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] 王锋, 曾祥华, 徐秀莲. 碳纳米管中封装富勒烯的机理. 物理学报, 2002, 51(8): 1778-1783. doi: 10.7498/aps.51.1778
计量
  • 文章访问数:  4423
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-03-25
  • 上网日期:  2023-04-04
  • 刊出日期:  2023-06-05

/

返回文章
返回