搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于角谱域和时间反演的任意均匀场的生成方法

安腾远 丁霄

引用本文:
Citation:

基于角谱域和时间反演的任意均匀场的生成方法

安腾远, 丁霄

A method of generating arbitrary uniform fields based on angular spectrum domain and time inversion

An Teng-Yuan, Ding Xiao
PDF
HTML
导出引用
  • 现有均匀场往往基于阵列天线的特殊排布, 通过平顶波束赋形在角远场区域或者通过点聚焦在近场区域生成的, 生成的均匀场直接受制于阵列排布形态且无法灵活调控. 提出了一种基于角谱域和改进时间反演方法相结合的均匀场生成方法, 该方法不受阵列排布的限制, 能够以同一阵列排布形态, 在包括近场区域在内的任意位置, 生成指定大小、形状以及偏转角度的多种均匀场. 首先理论解析了本方法不受阵列排布限制的原因; 其次数值验证了固定阵列排布形态灵活生成多种均匀场的能力; 最后引入时间反演方法, 并做出反演信号幅度倒数加权的改进, 解决了上述均匀场在生成过程中由幅度衰减和相位延迟带来均匀场平坦度恶化等问题. 研究结果表明, 合成场质量与其对应角谱域包络的主瓣和副瓣信息有关, 且生成任意均匀场必须包含至少1/2的角谱域主瓣信息和1/2的副瓣信息. 本方法能够灵活调控一维和二维均匀场的位置、大小、形状以及偏转角度, 为灵活生成均匀场提供了一条新思路.
    Existing uniform fields are usually based on the special arrangement of the array antenna. The uniform fields generated by flat-top beam shaping in angular far-field area or by point focusing in near-field area are directly subject to the array configuration and cannot be flexibly controlled. This paper presents a method of generating uniform field based on the combination of angular spectral domain and improved time reversal technique. This method is not limited by the array arrangement. It can generate a uniform field of specified size, shape and deflection angle in the same array arrangement at any position, including the near-field region. In this work, the reason why this method is not limited by array arrangement is explained theoretically. Secondly, the ability of the fixed array configuration to generate multiple uniform fields is validated numerically. Finally, the time-reversal technique of reversal signal amplitude reciprocal weighting is introduced. The problem of deterioration of uniform field flatness, caused by amplitude decay and phase delay during the generation of uniform field, is solved through this technology. The results show that the quality of the synthesized field is related to the main lobe and sidelobe information of its corresponding angular spectrum domain envelope, and the generated any uniform field must contain at least half of the angular spectrum domain main lobe information and half of the sidelobe information. This method can flexibly control the position, size, shape and deflection angle of one-dimensional and two-dimensional uniform field, which provides a new way to flexibly generating uniform fields.
      通信作者: 丁霄, xding@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171093)资助的课题.
      Corresponding author: Ding Xiao, xding@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171093).
    [1]

    Qi Y H, Yang G, Liu L, Fan J, Antonio O, Kong H W, Yu W, Yang Z P 2017 IEEE Trans. Electromagn. Compat. 59 1661Google Scholar

    [2]

    毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北 2015 物理学报 64 014301Google Scholar

    Bi X, Huang L, Du J S, Qi W Z, Gao Y, Rong J, Jiang H B 2015 Acta Phys. Sin. 64 014301Google Scholar

    [3]

    Seong H A, Chang H J, Dong M L, Wang S L 2020 IEEE Trans. Microwave Theory Tech. 68 2867Google Scholar

    [4]

    Yang Y, Fan Z P, Hong T, Chen M S, Tang X W, He J B, Chen X, Liu C J, Zhu H C, Huang K 2020 IEEE Trans. Microwave. Theory Tech. 68 4896Google Scholar

    [5]

    Giulio M B, Sara A, Gaetano M 2020 IEEE Trans. Antennas Propag. 68 6906Google Scholar

    [6]

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines) [王建, 郑一农, 何子远 2015 阵列天线理论与工程应用 (北京: 电子工业出版社) 第93—101页

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines)

    [7]

    Li J Y, Qi Y X, Zhou S G 2017 IEEE Trans. Antennas Propag. 65 6157Google Scholar

    [8]

    Rao K S, Chakraborty A, Das B 1986 Antennas & Propagation Society International Symposium Philadelphia, PA, USA, June 08–13, 1986 p387

    [9]

    Liu Y H, Liu Q H, Nie Z P 2010 IEEE Trans. Antennas Propag. 58 604Google Scholar

    [10]

    Shen H O, Wang B H, Li X 2017 IEEE Trans. Antennas Propag. 16 1098Google Scholar

    [11]

    Gu P F, Wang G, Fan Z H, Chen R S 2019 IEEE Trans. Antennas Propag. 67 7320Google Scholar

    [12]

    张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇 2015 物理学报 64 110504Google Scholar

    Zhang J L, Wen W G, Zheng Z Q, Gan X, Zhu X Y 2015 Acta Phys. Sin. 64 110504Google Scholar

    [13]

    Francisco J A P, Juan A R G, Emilio V L, S R R 1999 IEEE Trans. Antennas Propag. 47 506Google Scholar

    [14]

    Bitan M, G K Mahanti 2021 6th International Conference on Communication and Electronics Systems (ICCES) Coimbatre, India, July 8–10, 2021 p447

    [15]

    Guo S, Zhao D S, Wang B Z 2022 IEEE Trans. Antennas Propag. 21 908Google Scholar

    [16]

    Elsa D T, Juan M C, Alejandro D M 2007 IEEE Trans. Microwave Theory Tech. 55 85Google Scholar

    [17]

    Kumari V, Ahmed A, Kanumuri T, Shakher C, Sheoran G 2020 Int. J. Imaging Syst. Technol. 30 391Google Scholar

    [18]

    安腾远, 丁霄, 王秉中 2023 物理学报 72 030401Google Scholar

    An T Y, Ding X, Wang B Z 2023 Acta Phys. Sin. 72 030401Google Scholar

    [19]

    Zhao D S, Zhu M 2016 IEEE Antennas Wireless Propag. Lett. 15 1739Google Scholar

    [20]

    王秉中, 王任 2020 时间反演电磁学 (北京: 科学出版社 第165—179页

    Wang B Z, Wang R 2020 Time Reversal Electromagnetism (Beijing: Science Press) pp165–179

    [21]

    臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102Google Scholar

    Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102Google Scholar

    [22]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [23]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [24]

    Chen Z W, Liang F, Zhang Q L, Li B, Ge G D, Zhao D S 2021 IEEE Trans. Antennas Propag. 69 7011Google Scholar

  • 图 1  三种不同的阵列排布方式

    Fig. 1.  Three different array arrangements.

    图 2  三种不同阵列排布对应的角谱域采样图和合成场分布图 (a)归一化角谱域采样图; (b)归一化电场分布图

    Fig. 2.  Angular spectrum domain sampling diagram and synthetic field distribution diagram of three different array configurations: (a) Normalized angular spectrum domain sampling diagram; (b) normalized electric field distribution diagram.

    图 3  改变阵元数量后的角谱域和合成场 (a)阵元间距为0.5λ的角谱域采样结果; (b)不同阵元数量的阵列在目标位置的合成场

    Fig. 3.  Angular spectrum domain and generated field after changing number of array elements: (a) Angular spectrum domain sampling results with a spacing of 0.5λ between array elements; (b) composite field of arrays with different number of array elements at target position.

    图 4  两阵列和目标均匀场的空间分布 (a)等空域直线阵列 (b)非均匀直线阵列

    Fig. 4.  Spatial distribution of two arrays and target uniform field: (a) Isospatial linear array; (b) non-uniform linear array.

    图 5  目标均匀场对应的角谱域采样图和合成场分布图 (a)等空域直线阵列归一化角谱域采样图; (b)等空域直线阵列归一化电场分布图; (c)非均匀直线阵列归一化角谱域采样图; (d)非均匀直线阵列归一化电场分布图

    Fig. 5.  Angular spectrum domain sampling diagram and composite field distribution diagram of uniform field: (a) Normalized angular spectrum domain sampling diagram for isospatial linear array; (b) normalized electric field distribution diagram for isospatial linear array; (c) normalized angular spectrum domain sampling diagram for non-uniform linear array; (d) normalized electric field distribution diagram for non-uniform linear array.

    图 6  各个阵元对应的归一化角频率 (a)目标均匀场位于(0λ, 0λ); (b) 目标均匀场位于(0λ, –5λ); (c) 目标均匀场位于(–5λ, –5λ)

    Fig. 6.  Normalized angular frequency corresponding to each array element: (a) Target uniform field is located at (0λ, 0λ); (b) target uniform field is located at (0λ, –5λ); (c) target uniform field is located at (–5λ, –5λ).

    图 7  幅度归一化合成场 (a)目标均匀场位于(0λ, 0λ); (b) 目标均匀场位于(0λ, –5λ); (c) 目标均匀场位于(–5λ, –5λ)

    Fig. 7.  Amplitude normalization field: (a) Target uniform field is located at (0λ, 0λ); (b) target uniform field is located at (0λ, –5λ); (c) target uniform field is located at (–5λ, –5λ).

    图 8  各阵元辐射能量的幅度和初始相位 (a)本文提出的改进时间反演方法; (b)传统的时间反演方法

    Fig. 8.  Amplitude and initial phase of radiation energy of each array element: (a) Improved time reversal method proposed in this paper; (b) traditional time reversal method.

    图 9  两种时间反演方法在目标位置的合成场对比

    Fig. 9.  Comparison of two time reversal methods in synthetic field of target location.

    图 10  用于合成目标均匀微波场的等空域直线阵列

    Fig. 10.  Isospatial linear array for synthesizing uniform microwave field of target.

    图 11  电场分布图 (a)目标场1; (b)目标场2; (c)目标场3; (d)目标场4; (e)目标场5

    Fig. 11.  Electric field distributions: (a) Target field 1; (b) target field 2; (c) target field 3; (d) target field 4; (e) target field 5.

    图 12  用于合成目标均匀微波场的均匀栅格平面阵

    Fig. 12.  Uniform raster planar array for synthesizing uniform microwave field of target.

    图 13  表2中目标场1近场电场图  (a) z = 10λ对应的xOy平面归一化电场图; (b) y = 0λ对应的xOz平面归一化电场图

    Fig. 13.  Near-field electric field diagram of target field 1 in Table 2: (a) xOy plane normalized electric field diagram corresponding to z = 10λ; (b) xOz plane normalized electric field diagram corresponding to y = 0λ.

    图 14  表2中目标场2近场电场图  (a) z = 10λ对应的xOy平面归一化电场图; (b) x = 3λ对应的yOz平面归一化电场图

    Fig. 14.  Near-field electric field diagram of target field 2 in Table 2: (a) xOy plane normalized electric field diagram corresponding to z = 10λ; (b) yOz plane normalized electric field diagram corresponding to x = 3λ.

    图 15  表2中目标场3近场电场图 (a) $\sqrt 3 $z = –x+28λ平面归一化电场图; (b) y = 0λ对应的xOz平面归一化电场图

    Fig. 15.  Near-field electric field diagram of target field 3 in Table 2: (a) $\sqrt 3 $z = –x+28λ plane normalized electric field diagram; (b) xOz plane normalized electric field diagram corresponding to y = 0λ.

    表 1  5个目标场对应的空域、角谱域表达式以及各阵元的投影夹角

    Table 1.  Five target field expression spatial domain, spatial frequency domain and projection angle of each element.

    目标场 空域表达式 角谱域表达式 θn
    1 $ E(x, 15\lambda ) = \left\{ {\begin{aligned} &{1, \;\;|x| \leqslant 1.5\lambda } \\ &{0, \;\;{\text{others}}}\end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (3{k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2}}{{\sqrt {{{\left[ {(n - 16)\lambda /2} \right]}^2} + {{\left( {15\lambda } \right)}^2}} }}} \right)$
    2 $E(x, 10\lambda ) = \left\{ {\begin{aligned} &{1, \;\;{{ - 3}}\lambda < x < \lambda } \\ &{0, \;\;{\text{others}}}\end{aligned}} \right.$ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}}$ $ {\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 2\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 2\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $
    3 $ E(x, 10\lambda ) = \left\{ {\begin{aligned} &1 , \;\;{ - 3\lambda \leqslant x \leqslant - \lambda }\\ &{1, }\;\;{\lambda \leqslant x \leqslant 3\lambda {\text{ }}} \\ &{0, }\;\;{{\text{others }}}\end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (3{k_x}\lambda /2) - \sin ({k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2}}{{\sqrt {{{\left[ {(n - 16)\lambda /2} \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right)$
    4 $ E(x, y) = \left\{ {\begin{aligned} &{1,\;\; y = x + 13\lambda , {\text{ }}} \\ & ~~~- 3 - \dfrac{{\sqrt 2 }}{2} < \dfrac{x}{\lambda} < - 3 + \dfrac{{\sqrt 2 }}{2};\\ &0, \;\;{\text{others}} \end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 3\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 3\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) + \dfrac{{\text{π }}}{4}$
    5 $ E(x, y) = \left\{ {\begin{aligned}& 1, \;\; y = x + 17.5\lambda ,\\ & ~~~- 8.5\lambda < x < - 6.5\lambda; \\ &0,\;\; {\text{others}} \end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2\sqrt 2 {k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 7.5\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 7.5\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) + \dfrac{{\text{π }}}{4}$
    下载: 导出CSV

    表 2  3个目标场对应的空域、角谱域表达式

    Table 2.  Three target field expression spatial domain, spatial frequency domain.

    目标场 空域表达式 角谱域表达式
    1 $ E(x, y, 10\lambda ) = \left\{ \begin{aligned} &{1, }\;\;{\left| x \right| \leqslant \lambda , \left| y \right| \leqslant \lambda } \\ & {0, }\;\;{{\text{others }}} \end{aligned} \right. $ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (2{k_y}\lambda /2)}}{{{k_y}}}$
    2 $ E(x, y, 10\lambda ) = \left\{ {\begin{aligned} &{1, }\;\;{\begin{aligned} &{2\lambda \leqslant x \leqslant 4\lambda {\text{ }}} \\ &{ - 0.5\lambda \leqslant y \leqslant 2.5\lambda } \end{aligned}} \\ & {0, }\;\;{{\text{others }}} \end{aligned}} \right. $ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (3{k_y}\lambda /2)}}{{{k_y}}}$
    3 $ E(x, y, z) = \left\{ \begin{aligned} &{1, }\;\;{\begin{aligned} &{\sqrt 3 z = - x + 28\lambda } \\ &{6\lambda \leqslant x \leqslant 8\lambda } \\ & { - \lambda \leqslant y \leqslant \lambda {\text{ }}} \end{aligned}} \\ & {0, }\;\;{{\text{others }}} \end{aligned} \right.$ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (2{k_y}\lambda /2)}}{{{k_y}}}$
    下载: 导出CSV

    表 3  3个目标场对应的各阵元的投影夹角

    Table 3.  Three target field projection angle of each element.

    目标场 θn φn
    1 $ {\rm{ arcsin}}\left( {\dfrac{{\sqrt {{{[({n_x} - 11)\lambda /2]}^2} + {{[({n_y} - 11)\lambda /2]}^2}} }}{{\sqrt {{{[({n_x} - 11)\lambda /2]}^2} + {{[({n_y} - 11)\lambda /2]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $ ${\rm{ arctan}}\left( {\dfrac{{({n_x} - 6)\lambda /2}}{{({n_y} - 6)\lambda /2}}} \right)$
    2 $ {\rm{ arcsin}}\left( {\dfrac{{\sqrt {{{\left[ {({n_x} - 6)\lambda /2 - 3\lambda } \right]}^2} + {{\left[ {({n_y} - 6)\lambda /2 - \lambda } \right]}^2}} }}{{\sqrt {{{\left[ {({n_x} - 6)\lambda /2 - 3\lambda } \right]}^2} + {{\left[ {({n_y} - 6)\lambda /2 - \lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $ $ {\rm{ arctan}}\left( {\dfrac{{({n_x} - 11)\lambda /2 - 3\lambda }}{{({n_y} - 11)\lambda /2 - \lambda }}} \right) $
    3 ${\rm{ arcsin}}\left( {\dfrac{{\sqrt {{\text{d}}{x_n^2} + {{\left[ {({n_y} - 11)\lambda /2} \right]}^2}} }}{{\sqrt {{\text{d}}{x_n^2} + {{\left[ {({n_y} - 11)\lambda /2} \right]}^2} + {\text{d}}{z_n^2}} }}} \right) ^*$ ${\rm{ arctan}}\left( {\dfrac{{{\text{d}}{x_n}}}{{({n_y} - 11)\lambda /2}}} \right) ^*$
    注: *其中 $ {\text{d}}{x_n} = \dfrac{{{{\left[ {\dfrac{{\left( {{n_x} - 11} \right)\lambda /2}}{{\cos ({\text{π }}/6)}}} \right]}^2} + \bigg\{ {{\left( {7\sqrt 3 \lambda } \right)}^2} + {{\left[ {\left( {{n_x} - 11} \right)\lambda /2} \right]}^2} \bigg\} - \left[ {7\sqrt 3 \lambda + \left( {{n_x} - 11} \right)\lambda /2\tan ({\text{π }}/6)} \right]}}{{\dfrac{{\left( {{n_x} - 11} \right)\lambda }}{{\cos ({\text{π }}/6)}}}} $,
    ${\text{d}}{z_n} = \sqrt {{{\left( {7\sqrt 3 \lambda } \right)}^2} + {{\left[ {\left( {{n_x} - 11} \right)\lambda /2} \right]}^2} - {\text{d}}{x_n^2}} $.
    下载: 导出CSV
  • [1]

    Qi Y H, Yang G, Liu L, Fan J, Antonio O, Kong H W, Yu W, Yang Z P 2017 IEEE Trans. Electromagn. Compat. 59 1661Google Scholar

    [2]

    毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北 2015 物理学报 64 014301Google Scholar

    Bi X, Huang L, Du J S, Qi W Z, Gao Y, Rong J, Jiang H B 2015 Acta Phys. Sin. 64 014301Google Scholar

    [3]

    Seong H A, Chang H J, Dong M L, Wang S L 2020 IEEE Trans. Microwave Theory Tech. 68 2867Google Scholar

    [4]

    Yang Y, Fan Z P, Hong T, Chen M S, Tang X W, He J B, Chen X, Liu C J, Zhu H C, Huang K 2020 IEEE Trans. Microwave. Theory Tech. 68 4896Google Scholar

    [5]

    Giulio M B, Sara A, Gaetano M 2020 IEEE Trans. Antennas Propag. 68 6906Google Scholar

    [6]

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines) [王建, 郑一农, 何子远 2015 阵列天线理论与工程应用 (北京: 电子工业出版社) 第93—101页

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines)

    [7]

    Li J Y, Qi Y X, Zhou S G 2017 IEEE Trans. Antennas Propag. 65 6157Google Scholar

    [8]

    Rao K S, Chakraborty A, Das B 1986 Antennas & Propagation Society International Symposium Philadelphia, PA, USA, June 08–13, 1986 p387

    [9]

    Liu Y H, Liu Q H, Nie Z P 2010 IEEE Trans. Antennas Propag. 58 604Google Scholar

    [10]

    Shen H O, Wang B H, Li X 2017 IEEE Trans. Antennas Propag. 16 1098Google Scholar

    [11]

    Gu P F, Wang G, Fan Z H, Chen R S 2019 IEEE Trans. Antennas Propag. 67 7320Google Scholar

    [12]

    张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇 2015 物理学报 64 110504Google Scholar

    Zhang J L, Wen W G, Zheng Z Q, Gan X, Zhu X Y 2015 Acta Phys. Sin. 64 110504Google Scholar

    [13]

    Francisco J A P, Juan A R G, Emilio V L, S R R 1999 IEEE Trans. Antennas Propag. 47 506Google Scholar

    [14]

    Bitan M, G K Mahanti 2021 6th International Conference on Communication and Electronics Systems (ICCES) Coimbatre, India, July 8–10, 2021 p447

    [15]

    Guo S, Zhao D S, Wang B Z 2022 IEEE Trans. Antennas Propag. 21 908Google Scholar

    [16]

    Elsa D T, Juan M C, Alejandro D M 2007 IEEE Trans. Microwave Theory Tech. 55 85Google Scholar

    [17]

    Kumari V, Ahmed A, Kanumuri T, Shakher C, Sheoran G 2020 Int. J. Imaging Syst. Technol. 30 391Google Scholar

    [18]

    安腾远, 丁霄, 王秉中 2023 物理学报 72 030401Google Scholar

    An T Y, Ding X, Wang B Z 2023 Acta Phys. Sin. 72 030401Google Scholar

    [19]

    Zhao D S, Zhu M 2016 IEEE Antennas Wireless Propag. Lett. 15 1739Google Scholar

    [20]

    王秉中, 王任 2020 时间反演电磁学 (北京: 科学出版社 第165—179页

    Wang B Z, Wang R 2020 Time Reversal Electromagnetism (Beijing: Science Press) pp165–179

    [21]

    臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102Google Scholar

    Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102Google Scholar

    [22]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [23]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [24]

    Chen Z W, Liang F, Zhang Q L, Li B, Ge G D, Zhao D S 2021 IEEE Trans. Antennas Propag. 69 7011Google Scholar

  • [1] 闫轶著, 丁帅, 韩旭, 王秉中. 基于信道处理的时间反演幅度可调控多目标聚焦方法. 物理学报, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [2] 安腾远, 丁霄, 王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正. 物理学报, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [3] 陈传升, 王秉中, 王任. 基于时间反演技术的电磁器件端口场与内部场转换方法. 物理学报, 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [4] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 物理学报, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [5] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [6] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [7] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [8] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [9] 朱江, 王雁, 杨甜. 无线多径信道中基于时间反演的物理层安全传输机制. 物理学报, 2018, 67(5): 050201. doi: 10.7498/aps.67.20172134
    [10] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [11] 臧锐, 王秉中, 丁帅, 龚志双. 基于反演场扩散消除的时间反演多目标成像技术. 物理学报, 2016, 65(20): 204102. doi: 10.7498/aps.65.204102
    [12] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [13] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法. 物理学报, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [14] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [15] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [16] 赵德双, 岳文君, 余敏, 张升学. 时间反演脉冲电磁波在双负材料中传播特性研究. 物理学报, 2012, 61(7): 074102. doi: 10.7498/aps.61.074102
    [17] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [18] 章志敏, 王秉中, 葛广顶, 梁木生, 丁帅. 亚波长金属线阵中一维时间反演电磁波的聚焦机理研究. 物理学报, 2012, 61(9): 098401. doi: 10.7498/aps.61.098401
    [19] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [20] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
计量
  • 文章访问数:  4072
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-06-05
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-09-20

/

返回文章
返回