搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁异质结的远红外脉冲辐射及其光热调控研究

褚欣博 金钻明 吴旭 李婧楠 沈阳 王若愚 季秉煜 李章顺 彭滟

引用本文:
Citation:

铁磁异质结的远红外脉冲辐射及其光热调控研究

褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟

Pulsed far-infrared radiation of ferromagnetic heterojunction and its photothermal regulation

Chu Xin-Bo, Jin Zuan-Ming, Wu Xu, Li Jing-Nan, Shen Yang, Wang Ruo-Yu, Ji Bing-Yu, Li Zhang-Shun, Peng Yan
PDF
HTML
导出引用
  • 飞秒激光脉冲辐照在Pt/CoFe/Ta铁磁异质结上, 导致铁磁层中磁化强度超快淬灭并产生瞬态自旋流. 自旋流向重金属层扩散, 基于逆自旋霍尔效应在重金属层中转换成瞬态电荷流, 产生宽带远红外脉冲辐射. 本文通过两方面实验, 研究飞秒激光的光热效应对铁磁异质结产生远红外辐射的调控. 首先, 通过改变外加磁场的大小和方向, 研究远红外辐射脉冲振幅-磁场的磁滞回线. 与振动样品磁力计测量的磁滞回线相比, 远红外辐射脉冲振幅-磁场的磁滞回线表现出更小的矫顽力. 增大抽运光的能量密度, 发现样品的矫顽力进一步下降. 其次, 对Pt/CoFe/Ta三层异质结进行正向磁化饱和后施加一个反向的小磁场, 实验发现当入射的激光能量密度超过1.43 mJ/cm2时, 远红外辐射脉冲信号发生极性的反转. 上述两个实验结果不仅阐明飞秒激光脉冲的光热效应, 也为基于电子自旋的远红外辐射脉冲的调控提供新方法.
    Under illumination of a femtosecond laser pulse on the Pt/CoFe/Ta trilayer heterostructure, an impulsive spin current can be generated in the ferromagnetic layer due to the ultrafast demagnetization. The spin current is super-diffusively transported and injected into the neighboring heavy metal layers, and is converted into the transversal charge current due to the spin-orbit coupling, which is named inverse spin Hall effect. The transient charge current on a time scale of sub-picosecond gives rise to the electromagnetic radiation in the far-infrared range to the free space. In this work, we demonstrate two kinds of experiments to investigate the modulation of far-infrared emission by photo-thermal effect, which is due to the thermal energy deposed by light pulses on a short timescales. First, the amplitude of the emitted far-infrared pulse as a function of an applied magnetic field is measured, which shows a far-infrared hysteresis behavior. The coercive field of the sample obtained by far-infrared hysteresis is smaller than that obtained by the M-H hysteresis through vibrating sample magnetometer. In addition, the coercive field decreases with pump laser fluence increasing. Second, the control of spin polarization on an ultrafast timescale in the presence of a small magnetic field applied oppositely to that of the magnetization of the ferromagnetic sample. The amplitude of far-infrared time-domain signal reaches a maximum value at a pump fluence of 1.43 mJ/cm2. For the pump fluence larger than 1.43 mJ/cm2, the far-infrared pulse experiences a phase reversal. After the reversal, a decrease of the laser pump fluence cannot restore the original phase of the far-infrared pulse. The above two experimental results not only elucidate the photothermal effect of femtosecond laser pulses, but also provide a new method for controlling the far-infrared radiation pulses based on ultrafast spintronics. These results demonstrate that far-infrared emission spectroscopy can be used as an ultrafast optical method to investigate magnetic properties, such as the coercive field and anisotropy field of the samples.
      通信作者: 金钻明, physics_jzm@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975110, 61988102)、高等学校学科创新引智计划(111计划)(批准号: D18014)、上海市科技创新行动计划(批准号: 22JC1400202)、上海市科委国际联合实验室项目(批准号: 17590750300)、上海市科委重点项目(批准号: YDZX20193100004960)、上海市科学技术委员会科技创新行动计划(批准号: 21JC1402600)、上海市青年科技启明星计划(批准号: 18QA1401700)、上海市教育委员会和上海市教育发展基金会“晨光计划”(批准号: 16CG45) 和上海高校青年东方学者计划(批准号: QD2015020)资助的课题.
      Corresponding author: Jin Zuan-Ming, physics_jzm@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975110, 61988102), the 111Project (Grant No. D18014), the Science and Technology Commission of Shanghai, China (Grant No. 22JC1400202), the International Joint Lab Program of the Science and Technology Commission of Shanghai, China (Grant No. 17590750300), the Key Project of the Science and Technology Commission Shanghai, China (Grant No. YDZX20193100004960), the Science and Technology Commission of Shanghai, China (Grant No. 21JC1402600), the Rising-Star Program of the Science and Technology Commission of Shanghai, China (Grant No. 18QA1401700), the Chenguang Project of Shanghai Educational Development Foundation, China (Grant No. 16CG45), and the Young Eastern Scholar Project of Shanghai Municipal Education Commission, China (Grant No. QD2015020).
    [1]

    金钻明, 郭颖钰, 季秉煜, 李章顺, 马国宏, 曹世勋, 彭滟, 朱亦鸣, 庄松林 2022 光子学报 51 0751410Google Scholar

    Jin Z M, Guo Y Y, Ji B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022 Acta Photon. Sin. 51 0751410Google Scholar

    [2]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [3]

    Peng Y, Huang J, Luo J, Yang Z, Wang L, Wu X, Zang X, Yu C, Gu M, Hu Qing, Zhang X, Zhu Y, Zhuang S 2021 PhotoniX 2 12Google Scholar

    [4]

    Kürner T, Mittleman D M, Nagatsuma T 2022 THz Communications: Paving the Way Towards Wireless Tbps (Cham: Springer)

    [5]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [6]

    Scheid P, Remy Q, Lebegue S, Malinowski G, Mangin S 2022 J. Magn. Magn. Mater. 560 169596Google Scholar

    [7]

    Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P 2022 Nature 602 73Google Scholar

    [8]

    Jin Z M, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Klaui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [9]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing T, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [10]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 84 03203Google Scholar

    [11]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [12]

    Chen M J, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430Google Scholar

    [13]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [14]

    冯正, 王大承, 孙松, 谭为 2020 物理学报 69 208705Google Scholar

    Feng Z, Wang D C, Sun S, Tan W 2020 Acta Phys. Sin. 69 208705Google Scholar

    [15]

    王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜 2020 物理学报 69 200704Google Scholar

    Wang H T, Zhao H H, Wen L G, Wu X J, Nie T X, Zhao W S 2020 Acta Phys. Sin. 69 200704Google Scholar

    [16]

    Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104Google Scholar

    [17]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [18]

    Zhang S N, Jin Z M, Zhu Z D, Zhu W H, Zhang Z Z, Ma G H, Yao J Q 2018 J. Phys. D Appl. Phys 51 034001Google Scholar

    [19]

    Ni Y Y, Jin Z M, Song B J, Zhou X F, Chen H Y, Song C, Peng Y, Zhang C, Pan F, Ma G H, Zhu Y M, Zhuang S L 2021 Phys. Status Solidi RRL. 15 2100290Google Scholar

    [20]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [21]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H D, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [22]

    Shen J H, Feng Z, Xu P C, Hou D Z, Gao Y, Jin X F 2021 Phys. Rev. Lett. 126 197201Google Scholar

    [23]

    Cong K K, Vetter E, Yan L, Li Y, Zhang Q, Xiong Y Z, Qu H W, Schaller R D, Hoffmann A, Kemper A F, Yao Y X, Wang J G, You W, Wen H D, Zhang W, Sun D L 2021 Nat. Commun. 12 5744Google Scholar

    [24]

    Wang X B, Cheng L, Zhu D P, Wu Y, Chen M J, Wang Y, Zhao D M, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E M 2018 Adv. Mater. 30 1802356Google Scholar

    [25]

    Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021 Adv. Photonics Res. 2 2000099Google Scholar

    [26]

    Tong M, Hu Y, Wang Z, Zhou T, Xie X, Cheng X, Jiang T 2021 Nano Lett. 21 60Google Scholar

    [27]

    Rongione E, Fragkos S, Baringthon L, Hawecker J, Xenogiannopoulou E, Tsipas P, Song C, Micica M, Mangeney J, Tignon J, Boulier T, Reyren N, Lebrun R, Le Fevre P, Dhillon S, Dimoulas A, Jaffres H, George M 2022 Adv. Opt. Mater. 10 2102061Google Scholar

    [28]

    Huang Y Y, Yao Z H, He C, Zhu L P, Zhang L H, Bai J T, Xu X L 2019 J. Phys. Condens. Matter 31 153001Google Scholar

    [29]

    Yang D X, Tonouchi M 2021 J. Appl. Phys. 130 055701Google Scholar

    [30]

    Sotome M, Nakamura M, Morimoto T, Zhang Y, Guo G Y, Kawasaki M, Nagaosa N, Tokura Y, Ogawa N 2021 Phys. Rev. B 103 L241111Google Scholar

    [31]

    Mannan A, Yamahara K, Bagsican F R G, Serita K, Murakami H, Kawayama I, Higashiwaki M, Tonouchi M 2021 J. Appl. Phys. 129 245702Google Scholar

    [32]

    Mannan A, Bagsican F R G, Yamahara K, Kawayama I, Murakami H, Bremers H, Rossow U, Hangleiter A, Turchinovich D, Tonouchi M 2021 Adv. Opt. Mater. 9 2100258Google Scholar

    [33]

    Hamh S Y, Park S H, Jerng S K, Jeon J H, Chun S H, Lee J S 2016 Phys. Rev. B 94 161405Google Scholar

    [34]

    魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣 2022 物理学报 71 090702Google Scholar

    Wei G S, Zhang H, Wu X J, Zhang H R, Wang C, Wang B, Wang L, Sun J R 2022 Acta Phys. Sin. 71 090702Google Scholar

    [35]

    Tu C M, Chen Y C, Huang P, Chuang P Y, Lin M Y, Cheng C M, Lin J Y, Juang J Y, Wu K H, Huang J C A, Pong W F, Kobayashi T, Luo C W 2017 Phys. Rev. B 96 195407Google Scholar

    [36]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Munzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Klaui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [37]

    Ruan S Y, Lin X, Chen H Y, Song B J, Dai Y, Yan X N, Jin Z M, Ma G H, Yao J Q 2021 Appl. Phys. Lett. 118 011102Google Scholar

    [38]

    Zhang W T, Maldonado P, Jin Z M, Seifert T S, Arabski J, Schmerber G, Beaurepaire E, Bonn M, Kampfrath T, Oppeneer P M, Turchinovich D 2020 Nat. Commun. 11 4247Google Scholar

    [39]

    Zhang W T, Turchinovich D 2021 Opt. Express 29 24411Google Scholar

    [40]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [41]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Munzenberg M, Klaui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [42]

    Jimenez-Cavero P, Gueckstock O, Nadvornik L, Lucas I, Seifert T S, Wolf M, Rouzegar R, Brouwer P W, Becker S, Jakob G, Klaui M, Guo C Y, Wan C H, Han X F, Jin Z M, Zhao H, Wu D, Morellon L, Kampfrath T 2022 Phys. Rev. B 105 184408Google Scholar

    [43]

    Li Z S, Jiang Y X, Jin Z M, Li Z Y, Lu X Y, Ye Z J, Pang J Y, Xu Y B, Peng Y 2022 Nanomaterials 12 4267Google Scholar

    [44]

    Yao Z H, Fu H R, Du W Y, Huang Y Y, Lei Z, You C Y, Xu X L 2021 Phys. Rev. B 103 L201404Google Scholar

    [45]

    Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049Google Scholar

    [46]

    Agarwal P, Medwal R, Kumar A, Asada H, Fukuma Y, Rawat R S, Battiato M, Singh R 2021 Adv. Funct. Mater. 31 2010453Google Scholar

    [47]

    Jiang Y X, Li Z S, Li Z Y, Jin Z M, Lu X Y, Xu Y B, Peng Y, Zhu Y M 2023 Opt. Lett. 48 2054Google Scholar

    [48]

    Rouzegar R, Chekhov A L, Behovits Y, Serrano B R, Syskaki M A, Lambert C H, Engel D, Martens U, Münzenberg M, Wolf M, Jakob G, Kläui M, Seifert T S, Kampfrath T 2023 Phys. Rev. Appl. 19 034018Google Scholar

    [49]

    Chaurasiya A, Li Z, Medwal R, Gupta S, Mohan J R, Fukuma Y, Asada H, Chia E M, Rawat R S 2022 Adv. Opt. Mater. 10 2201929Google Scholar

    [50]

    Ishibashi K, Iihama S, Mizukami S 2023 Phys. Rev. B 107 144413Google Scholar

  • 图 1  (a) 基于Pt/CoFe/Ta三层膜异质结的远红外脉冲辐射光谱示意图, 自旋流$ {\boldsymbol{J}}_{{\rm{s}}1} $$ {\boldsymbol{J}}_{{\rm{s}}2} $分别从CoFe层注入到Pt和Ta层, $ {\boldsymbol{J}}_{{\rm{c}}1} $$ {\boldsymbol{J}}_{{\rm{c}}2} $分别为Pt和Ta层中由自旋流$ {\boldsymbol{J}}_{{\rm{s}}1} $$ {\boldsymbol{J}}_{{\rm{s}}2} $转化成的电荷流, M为磁化强度, CoFe层中的红色实箭头表示退磁区域外的磁化强度, 红色虚箭头表示退磁区域内的磁化强度; (b)电光取样远红外脉冲的探测系统示意图(QWP为1/4波片, WP为沃拉斯顿棱镜, BP为平衡光电探测器)

    Fig. 1.  (a) Schematic diagram of far-infrared pulse emission spectroscopy based on Pt/CoFe/Ta three-layer heterostructure. The spin currents $ {\boldsymbol{J}}_{{\rm{s}}1} $ and $ {\boldsymbol{J}}_{{\rm{s}}2} $ are injected from CoFe layer into both Pt and Ta layers; $ {\boldsymbol{J}}_{{\rm{c}}1} $ and $ {\boldsymbol{J}}_{{\rm{c}}2} $ are the charge currents converted from the spin currents $ {\boldsymbol{J}}_{{\rm{s}}1} $ and $ {\boldsymbol{J}}_{{\rm{s}}2} $ in Pt and Ta layers, respectively. M is the magnetization of the CoFe layer. The red solid arrow in the CoFe layer indicates the magnetization outside the demagnetization area, and the red dashed arrow indicates the magnetization within the demagnetization area. (b) Schematic diagram of electro-optical sampling system for probing the far-infrared pulse (QWP, quarter-wave plate; WP, Wollaston prism; BP, balanced photodetector).

    图 2  (a) 正/反向磁场下Pt/CoFe/Ta三层膜异质结的远红外脉冲发射信号; (b) 经傅里叶变化得到的归一化振幅谱

    Fig. 2.  (a) Far-infrared pulse emission of Pt/CoFe/Ta three-layer heterostructures under ±H; (b) normalized far-infrared amplitude spectra by Fourier transform.

    图 3  (a) 不同磁场下Pt/CoFe/Ta三层膜异质结的远红外发射脉冲时域信号, 为了清晰区分实验数据, 实验数据均垂直移动; (b)对(a)图的时域信号进行傅里叶变化得到的振幅谱; (c)两种抽运光能量密度下, 样品产生的远红外辐射脉冲振幅随外加磁场的变化曲线, 蓝色实心圆和红色空心圆分别代表抽运激光能量密度为1.22和2.04 mJ/cm2时的实验结果, 绿色实线为VSM测量得到样品的磁滞回线

    Fig. 3.  (a) Time domain signals of far-infrared emission from Pt/CoFe/Ta three-layer heterostructures under different magnetic fields. For clarity, all experimental data are shifted vertically according to the H. (b) The frequency-domain spectra of Pt/CoFe/Ta with different H, as calculated by fast Fourier transform from (a). (c) The amplitudes of far-infrared emitted pulses as functions of the applied magnetic field, measured at two pump fluences. The blue solid circles and the red hollow circles represent the experimental results measured at 1.22 and 2.04 mJ/cm2, respectively. The green solid line is the magnetic hysteresis loop of the Pt/CoFe/Ta characterized by VSM.

    图 4  (a) 外加与样品磁化方向相反的小磁场时, 激光脉冲诱导Pt/CoFe/Ta异质结辐射远红外脉冲相位反转实验示意图; 不同抽运光能量密度下的远红外脉冲的(b)时域信号和(c)频域振幅谱, 抽运激光的能量密度改变范围为0.20—2.04 mJ/cm2; (d) H = –60 Oe时, 随着激光抽运能量密度的增大, 远红外辐射脉冲的振幅在1.43 mJ/cm2时达到峰值, 当激光脉冲能量密度继续增大, 远红外辐射脉冲的相位发生反转

    Fig. 4.  (a) Schematic diagram of phase reversal of emitted far-infrared pulse generation when a small magnetic field opposite to the magnetization orientation of the sample is applied. (b) The time domain signal and (c) frequency-domain spectra measured under different pump fluences in a range of 0.20–2.04 mJ/cm2. (d) The amplitude of far-infrared time-domain signal reaches the maximum at a pump fluence of 1.43 mJ/cm2. When the pump fluence is larger than 1.43 mJ/cm2, the far-infrared pulse experiences a phase reversal.

    图 5  (a) 外加磁场驱动的自旋翻转; (b)光热效应辅助磁场驱动自旋翻转示意图

    Fig. 5.  (a) Schematic diagram of spin switching induced by external magnetic field; (b) the photo-thermal assisted spin reversal by external magnetic field.

  • [1]

    金钻明, 郭颖钰, 季秉煜, 李章顺, 马国宏, 曹世勋, 彭滟, 朱亦鸣, 庄松林 2022 光子学报 51 0751410Google Scholar

    Jin Z M, Guo Y Y, Ji B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022 Acta Photon. Sin. 51 0751410Google Scholar

    [2]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [3]

    Peng Y, Huang J, Luo J, Yang Z, Wang L, Wu X, Zang X, Yu C, Gu M, Hu Qing, Zhang X, Zhu Y, Zhuang S 2021 PhotoniX 2 12Google Scholar

    [4]

    Kürner T, Mittleman D M, Nagatsuma T 2022 THz Communications: Paving the Way Towards Wireless Tbps (Cham: Springer)

    [5]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [6]

    Scheid P, Remy Q, Lebegue S, Malinowski G, Mangin S 2022 J. Magn. Magn. Mater. 560 169596Google Scholar

    [7]

    Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P 2022 Nature 602 73Google Scholar

    [8]

    Jin Z M, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Klaui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [9]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing T, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [10]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 84 03203Google Scholar

    [11]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [12]

    Chen M J, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430Google Scholar

    [13]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [14]

    冯正, 王大承, 孙松, 谭为 2020 物理学报 69 208705Google Scholar

    Feng Z, Wang D C, Sun S, Tan W 2020 Acta Phys. Sin. 69 208705Google Scholar

    [15]

    王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜 2020 物理学报 69 200704Google Scholar

    Wang H T, Zhao H H, Wen L G, Wu X J, Nie T X, Zhao W S 2020 Acta Phys. Sin. 69 200704Google Scholar

    [16]

    Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104Google Scholar

    [17]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [18]

    Zhang S N, Jin Z M, Zhu Z D, Zhu W H, Zhang Z Z, Ma G H, Yao J Q 2018 J. Phys. D Appl. Phys 51 034001Google Scholar

    [19]

    Ni Y Y, Jin Z M, Song B J, Zhou X F, Chen H Y, Song C, Peng Y, Zhang C, Pan F, Ma G H, Zhu Y M, Zhuang S L 2021 Phys. Status Solidi RRL. 15 2100290Google Scholar

    [20]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [21]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H D, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [22]

    Shen J H, Feng Z, Xu P C, Hou D Z, Gao Y, Jin X F 2021 Phys. Rev. Lett. 126 197201Google Scholar

    [23]

    Cong K K, Vetter E, Yan L, Li Y, Zhang Q, Xiong Y Z, Qu H W, Schaller R D, Hoffmann A, Kemper A F, Yao Y X, Wang J G, You W, Wen H D, Zhang W, Sun D L 2021 Nat. Commun. 12 5744Google Scholar

    [24]

    Wang X B, Cheng L, Zhu D P, Wu Y, Chen M J, Wang Y, Zhao D M, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E M 2018 Adv. Mater. 30 1802356Google Scholar

    [25]

    Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021 Adv. Photonics Res. 2 2000099Google Scholar

    [26]

    Tong M, Hu Y, Wang Z, Zhou T, Xie X, Cheng X, Jiang T 2021 Nano Lett. 21 60Google Scholar

    [27]

    Rongione E, Fragkos S, Baringthon L, Hawecker J, Xenogiannopoulou E, Tsipas P, Song C, Micica M, Mangeney J, Tignon J, Boulier T, Reyren N, Lebrun R, Le Fevre P, Dhillon S, Dimoulas A, Jaffres H, George M 2022 Adv. Opt. Mater. 10 2102061Google Scholar

    [28]

    Huang Y Y, Yao Z H, He C, Zhu L P, Zhang L H, Bai J T, Xu X L 2019 J. Phys. Condens. Matter 31 153001Google Scholar

    [29]

    Yang D X, Tonouchi M 2021 J. Appl. Phys. 130 055701Google Scholar

    [30]

    Sotome M, Nakamura M, Morimoto T, Zhang Y, Guo G Y, Kawasaki M, Nagaosa N, Tokura Y, Ogawa N 2021 Phys. Rev. B 103 L241111Google Scholar

    [31]

    Mannan A, Yamahara K, Bagsican F R G, Serita K, Murakami H, Kawayama I, Higashiwaki M, Tonouchi M 2021 J. Appl. Phys. 129 245702Google Scholar

    [32]

    Mannan A, Bagsican F R G, Yamahara K, Kawayama I, Murakami H, Bremers H, Rossow U, Hangleiter A, Turchinovich D, Tonouchi M 2021 Adv. Opt. Mater. 9 2100258Google Scholar

    [33]

    Hamh S Y, Park S H, Jerng S K, Jeon J H, Chun S H, Lee J S 2016 Phys. Rev. B 94 161405Google Scholar

    [34]

    魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣 2022 物理学报 71 090702Google Scholar

    Wei G S, Zhang H, Wu X J, Zhang H R, Wang C, Wang B, Wang L, Sun J R 2022 Acta Phys. Sin. 71 090702Google Scholar

    [35]

    Tu C M, Chen Y C, Huang P, Chuang P Y, Lin M Y, Cheng C M, Lin J Y, Juang J Y, Wu K H, Huang J C A, Pong W F, Kobayashi T, Luo C W 2017 Phys. Rev. B 96 195407Google Scholar

    [36]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Munzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Klaui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [37]

    Ruan S Y, Lin X, Chen H Y, Song B J, Dai Y, Yan X N, Jin Z M, Ma G H, Yao J Q 2021 Appl. Phys. Lett. 118 011102Google Scholar

    [38]

    Zhang W T, Maldonado P, Jin Z M, Seifert T S, Arabski J, Schmerber G, Beaurepaire E, Bonn M, Kampfrath T, Oppeneer P M, Turchinovich D 2020 Nat. Commun. 11 4247Google Scholar

    [39]

    Zhang W T, Turchinovich D 2021 Opt. Express 29 24411Google Scholar

    [40]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [41]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Munzenberg M, Klaui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [42]

    Jimenez-Cavero P, Gueckstock O, Nadvornik L, Lucas I, Seifert T S, Wolf M, Rouzegar R, Brouwer P W, Becker S, Jakob G, Klaui M, Guo C Y, Wan C H, Han X F, Jin Z M, Zhao H, Wu D, Morellon L, Kampfrath T 2022 Phys. Rev. B 105 184408Google Scholar

    [43]

    Li Z S, Jiang Y X, Jin Z M, Li Z Y, Lu X Y, Ye Z J, Pang J Y, Xu Y B, Peng Y 2022 Nanomaterials 12 4267Google Scholar

    [44]

    Yao Z H, Fu H R, Du W Y, Huang Y Y, Lei Z, You C Y, Xu X L 2021 Phys. Rev. B 103 L201404Google Scholar

    [45]

    Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049Google Scholar

    [46]

    Agarwal P, Medwal R, Kumar A, Asada H, Fukuma Y, Rawat R S, Battiato M, Singh R 2021 Adv. Funct. Mater. 31 2010453Google Scholar

    [47]

    Jiang Y X, Li Z S, Li Z Y, Jin Z M, Lu X Y, Xu Y B, Peng Y, Zhu Y M 2023 Opt. Lett. 48 2054Google Scholar

    [48]

    Rouzegar R, Chekhov A L, Behovits Y, Serrano B R, Syskaki M A, Lambert C H, Engel D, Martens U, Münzenberg M, Wolf M, Jakob G, Kläui M, Seifert T S, Kampfrath T 2023 Phys. Rev. Appl. 19 034018Google Scholar

    [49]

    Chaurasiya A, Li Z, Medwal R, Gupta S, Mohan J R, Fukuma Y, Asada H, Chia E M, Rawat R S 2022 Adv. Opt. Mater. 10 2201929Google Scholar

    [50]

    Ishibashi K, Iihama S, Mizukami S 2023 Phys. Rev. B 107 144413Google Scholar

  • [1] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [2] 王善江, 苏丹, 张彤. 表面等离激元光热效应研究进展. 物理学报, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [3] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [4] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [5] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [6] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [7] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响. 物理学报, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [8] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响. 物理学报, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [9] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [10] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力. 物理学报, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [11] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [12] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [13] 张冬仙, 刘 超, 章海军. 微纳米尺度红外光热膨胀效应及新型光热驱动方法研究. 物理学报, 2008, 57(5): 3107-3112. doi: 10.7498/aps.57.3107
    [14] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [15] 沈全洪, 徐端颐, 齐国生, 胡 恒, 刘 嵘. 孔径型超分辨近场结构光盘的掩膜热效应分析. 物理学报, 2005, 54(10): 4718-4722. doi: 10.7498/aps.54.4718
    [16] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性. 物理学报, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [17] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析. 物理学报, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [18] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [19] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应. 物理学报, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
    [20] 陆卫, 俞志毅, 叶红娟, 徐文兰, 马可军, 沈学础. Hg1-xMnxTe远红外反射光谱. 物理学报, 1990, 39(3): 495-500. doi: 10.7498/aps.39.495
计量
  • 文章访问数:  3882
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-05-22
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回