搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质

郑明 杨健 张怡笑 关朋飞 程奥 范贺良

引用本文:
Citation:

Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质

郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良

Energy storage and photoluminescence properties of Sm3+-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 multifunctional ceramics

Zheng Ming, Yang Jian, Zhang Yi-Xiao, Guan Peng-Fei, Cheng Ao, Fan He-Liang
PDF
HTML
导出引用
  • 近年来, 无机多功能材料在各个领域得到了广泛的应用. 掺杂稀土的铁电材料作为一种新型的无机多功能材料具有很大的潜力. 本文系统地研究了Sm3+掺杂的0.94Bi0.5Na0.5TiO3-0.06BaTiO3(BNTBT)陶瓷的铁电、储能行为和光致发光性能. 结果表明, Sm3+的引入有效地抑制了BNTBT的晶粒生长, 导致剩余极化(Pr)和矫顽场(Ec)明显下降. 在60 kV/cm的外加电场下, 当Sm3+掺杂浓度为0.6%时, Wrec达到最大值0.27 J/cm3. 储能效率(η)随着电场的增加而逐渐降低, 在掺杂浓度大于0.6%时稳定在45%附近. 此外, 在408 nm的近紫外光的激发下, 所有Sm3+掺杂的样品都表现出可见光的输出, 当Sm3+的掺杂量为1.0%时发光强度达到最大, 在701 nm处(4G5/26H11/2)发光强度的相对变化(ΔI/I)达到700%. 本文制备了一种同时具有储能和光致发光特性的新型陶瓷, 为无机多功能材料的开发提供了一种有希望的策略.
    In recent years, inorganic multifunctional ferroelectric ceramics have been widely utilized in various fields, including aerospace, optical communication, and capacitors, owing to their high stability, easy synthesis, and flexibility. Rare-earth doped ferroelectric materials hold immense potential as a new type of inorganic multifunctional material. This work focuses on the synthesis of x%Sm3+-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (BNTBT:x%Sm3+ in short) ceramics by using the conventional solid-state sintering method, aiming to comprehensively investigate their ferroelectric, energy storage, and photoluminescence (PL) properties. The X-ray diffraction analysis reveals that the introduction of Sm3+ does not trigger off the appearing of secondary phases or changing of the original perovskite structure. The scanning electron microscope (SEM) images demonstrate that Sm3+ incorporation effectively restrains the grain growth in BNTBT, resulting in the average grain size decreasing from 1.16 to 0.95 μm. The reduction in remanent polarization (Pr) and coercive field (Ec) can be attributed to both the grain size refinement and the formation of morphotropic phase boundaries (MPBs). Under an applied field of 60 kV/cm, the maximum value of energy storage density (Wrec) reaches to 0.27 J/cm3 at an Sm3+ doping concentration of 0.6%. The energy storage efficiency (η) gradually declines with electric field increasing and stabilizes at approximately 45% for Sm3+ doping concentrations exceeding 0.6%. This result can be ascribed to the decrease in ΔP (Pmax Pr) due to the growth of ferroelectric domains as the electric field increases. Additionally, all Sm3+-doped BNTBT ceramics exhibit outstanding PL performance upon being excited with near-ultraviolet (NUV) light at 408 nm, without peak position shifting. The PL intensity peaks when the Sm3+ doping concentration is 1.0%, with a relative change (ΔI/I) reaching to 700% at 701 nm (4G5/26H11/2). However, the relative change in PL intensity is minimum at 562 nm (4G5/26H5/2) due to the fact that the 4G5/26H5/2 transition represents a magnetic dipole transition, and the PL intensity remains relatively stable despite variations in the crystal field environment surrounding Sm3+. Our successful synthesis of this novel ceramic material, endowed with both energy storage and PL properties, offers a promising avenue for developing inorganic multifunctional materials. The Sm3+-doped BNTBT ceramics hold considerable potential applications in optical memory and multifunctional capacitors.
      通信作者: 郑明, zhengm@mail.ustc.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2022QN1087)资助的课题.
      Corresponding author: Zheng Ming, zhengm@mail.ustc.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2022QN1087).
    [1]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [2]

    Guo P F, Su L, Peng K, Lu D, Xu L, Li M Z, Wang H J 2022 ACS Nano 16 6625Google Scholar

    [3]

    Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519Google Scholar

    [4]

    Nazir H, Batool M, Osorio F J B, Isaza-Ruiz M, Xu X H, Vignarooban K, Phelan P, Inamuddin, Kannan A M 2019 Int. J. Heat Mass Transfer 129 491Google Scholar

    [5]

    Wen Q B, Qu F M, Yu Z J, Graczyk Zajac M, Xiong X, Riedel R 2022 J. Adv. Ceram. 11 197Google Scholar

    [6]

    Yu R, Zhang H L, Guo B L 2022 Nano-Micro Lett. 14 1Google Scholar

    [7]

    Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620Google Scholar

    [8]

    Zhang X Q, Zhang K Q, Zhang B, Li Y, He R J 2022 J. Adv. Ceram. 11 1918Google Scholar

    [9]

    包定华 2020 物理学报 69 127712Google Scholar

    Bao D H 2020 Acta Phys. Sin. 69 127712Google Scholar

    [10]

    Zhu D Y, Nikl M, Chewpraditkul W, Li J 2022 J. Adv. Ceram. 11 1825Google Scholar

    [11]

    Zou H, Yu Y, Li J, Cao Q F, Wang X S, Hou J W 2015 Mater. Res. Bull. 69 112Google Scholar

    [12]

    Hao S L, Li J H, Sung Q B, Wei L L, Yang Z P 2019 J. Mater. Sci. -Mater. Electron. 30 13372Google Scholar

    [13]

    Hao S L, Li J H, Yang P, Wei L L, Yang Z P 2017 J. Am. Ceram. Soc. 100 5620Google Scholar

    [14]

    He J Y, Zhang J J, Xing H J, Pan H L, Jia X R, Wang J Y, Zheng P 2017 Ceram. Int. 43 250Google Scholar

    [15]

    Jia Q, Zhang Q, Sun H, Hao X 2021 J. Eur. Ceram. Soc. 41 1211Google Scholar

    [16]

    Jia Q N, Li Y, Guan L L, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Sci. -Mater. Electron. 31 19277Google Scholar

    [17]

    Hui X W, Peng D F, Zou H, Li J, Cao Q F, Li Y X, Wang X S, Yao X 2014 Ceram. Int. 40 12477Google Scholar

    [18]

    Li W, Wang Z, Hao J G, Fu P, Du J, Chu R Q, Xu Z J 2018 J. Mater. Chem. C 6 11312Google Scholar

    [19]

    Liu Y, Luo H, Zhai D, Zeng L, Xiao Z, Hu Z, Wang X, Zhang D 2022 ACS Appl. Mater. Interfaces 14 19376Google Scholar

    [20]

    Qin Y L, Zhang S J, Wu Y Q, Lu C J, Zhang J L 2017 J. Eur. Ceram. Soc. 37 3493Google Scholar

    [21]

    Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026Google Scholar

    [22]

    Cao R P, Wang W H, Ren Y, Hu Z F, Zhou X C, Xu Y C, Luo Z Y, Liang A H 2021 J. Lumin. 235 118054Google Scholar

    [23]

    Sun H Q, Liu J, Wang X S, Zhang Q W, Hao X H, An S L 2017 J. Mater. Chem. C 5 9080Google Scholar

    [24]

    Lü J W, Li Q, Li Y, Tang M Y, Jin D L, Yan Y, Fan B Y, Jin L, Liu G 2021 Chem. Eng. J. 420 129900Google Scholar

    [25]

    Du P, Yu J S 2015 Ceram. Int. 41 6710Google Scholar

    [26]

    Said S, Marchet P, Merle Mejean T, Mercurio J P 2004 Mater. Lett. 58 1405Google Scholar

    [27]

    Choi H, Cho S H, Khan S, Lee K R, Kim S 2014 J. Mater. Chem. C 2 6017Google Scholar

    [28]

    Lun M M, Wang W, Xing Z F, Wan Z, Wu W Y, Song H Z, Wang Y Z, Li W, Chu B L, He Q Y 2019 J. Am. Ceram. Soc. 102 5243Google Scholar

    [29]

    Xue J P, Noh H M, Choi B C, Park S H, Kim J H, Jeong J H, Du P 2020 Chem. Eng. J. 382 122861Google Scholar

    [30]

    Li F F, Liu Y F, Lyu Y N, Qi Y H, Yu Z L, Lu C G 2017 Ceram. Int. 43 106Google Scholar

    [31]

    Han K, Luo N N, Chen Z P, Ma L, Chen X Y, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562Google Scholar

    [32]

    Zhang M H, Qi J L, Liu Y Q, Lan S, Luo Z X, Pan H, Lin Y H 2022 Rare Metals 41 730Google Scholar

    [33]

    Huang Y, Zhao C, Wu B, Zhang X 2022 J. Eur. Ceram. Soc. 42 2764Google Scholar

    [34]

    Muthuramalingam M, Ruth D E J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scr. Mater. 112 58Google Scholar

    [35]

    Zheng M, Guan P, Ji X 2023 CrystEngComm 25 541Google Scholar

    [36]

    Guan P F, Zhang Y X, Yang J, Zheng M 2023 Ceram. Int. 49 11796Google Scholar

    [37]

    Ma C L, Wang X Y, Tan W S, Zhou W P, Wang X X, Cheng Z Z, Chen G B, Zhai Z Y 2020 Dalton Trans. 49 5581Google Scholar

    [38]

    Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [39]

    Zhang Y M, Liang G C, Tang S L, Peng B L, Zhang Q, Liu L J, Sun W H 2020 Ceram. Int. 46 1343Google Scholar

    [40]

    杜金华, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703Google Scholar

    Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703Google Scholar

    [41]

    Wei T, Sun F C, Zhao C Z, Li C P, Yang M, Wang Y Q 2013 Ceram. Int. 39 9823Google Scholar

    [42]

    Singh V, Watanabe S, Rao T K G, Chubaci J F D, Kwak H Y 2010 J. Non-Cryst. Solids 356 1185Google Scholar

    [43]

    Raju G S R, Pavitra E, Patnam H, Varaprasad G L, Chodankar N R, Patil S J, Ranjith K S, Rao M V B, Yu J S, Park J Y, Huh Y S, Han Y K 2022 J. Alloys Compd. 903 163881Google Scholar

  • 图 1  XRD θ-2θ扫描图谱

    Fig. 1.  XRD θ-2θ scan pattern.

    图 2  (a)—(f) BNTBT:x%Sm3+ (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0)的SEM照片和晶粒尺寸分布图

    Fig. 2.  (a)–(f) SEM images and grain size distribution patterns of BNTBT: x%Sm3+ (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0).

    图 3  BNTBT:x%Sm3+ (a) 电滞回线; (b) PrEc随掺杂浓度的变化图

    Fig. 3.  BNTBT:x%Sm3+: (a) P-E loops; (b) the image of the variation of Pr and Ec.

    图 4  BNTBT:x%Sm3+ (a) 单极P-E曲线, (b) Wrec, (c) η, (d) Wrecη在60 kV/cm随掺杂浓度的变化

    Fig. 4.  (a) Single P-E loops, (b) Wrec, (c) η, and (d) Wrec and η changes at 60 kV/cm under diverse doping concentrations for BNTBT:x%Sm3+samples.

    图 5  (a) BNTBT:0.2%Sm3+陶瓷PL激发光谱; (b) 不同掺杂浓度在408 nm光激发下的发射光谱; (c) 不同发射峰的PL强度变化图; (d) ΔI/I

    Fig. 5.  (a) PLE spectrum of BNTBT:0.2%Sm3+ ceramic; (b) PL spectrum under 408 nm excitation with diverse doping concentrations; (c) the PL intensity change diagram at different emission peaks; (d) the diagram of ΔI/I.

  • [1]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [2]

    Guo P F, Su L, Peng K, Lu D, Xu L, Li M Z, Wang H J 2022 ACS Nano 16 6625Google Scholar

    [3]

    Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519Google Scholar

    [4]

    Nazir H, Batool M, Osorio F J B, Isaza-Ruiz M, Xu X H, Vignarooban K, Phelan P, Inamuddin, Kannan A M 2019 Int. J. Heat Mass Transfer 129 491Google Scholar

    [5]

    Wen Q B, Qu F M, Yu Z J, Graczyk Zajac M, Xiong X, Riedel R 2022 J. Adv. Ceram. 11 197Google Scholar

    [6]

    Yu R, Zhang H L, Guo B L 2022 Nano-Micro Lett. 14 1Google Scholar

    [7]

    Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620Google Scholar

    [8]

    Zhang X Q, Zhang K Q, Zhang B, Li Y, He R J 2022 J. Adv. Ceram. 11 1918Google Scholar

    [9]

    包定华 2020 物理学报 69 127712Google Scholar

    Bao D H 2020 Acta Phys. Sin. 69 127712Google Scholar

    [10]

    Zhu D Y, Nikl M, Chewpraditkul W, Li J 2022 J. Adv. Ceram. 11 1825Google Scholar

    [11]

    Zou H, Yu Y, Li J, Cao Q F, Wang X S, Hou J W 2015 Mater. Res. Bull. 69 112Google Scholar

    [12]

    Hao S L, Li J H, Sung Q B, Wei L L, Yang Z P 2019 J. Mater. Sci. -Mater. Electron. 30 13372Google Scholar

    [13]

    Hao S L, Li J H, Yang P, Wei L L, Yang Z P 2017 J. Am. Ceram. Soc. 100 5620Google Scholar

    [14]

    He J Y, Zhang J J, Xing H J, Pan H L, Jia X R, Wang J Y, Zheng P 2017 Ceram. Int. 43 250Google Scholar

    [15]

    Jia Q, Zhang Q, Sun H, Hao X 2021 J. Eur. Ceram. Soc. 41 1211Google Scholar

    [16]

    Jia Q N, Li Y, Guan L L, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Sci. -Mater. Electron. 31 19277Google Scholar

    [17]

    Hui X W, Peng D F, Zou H, Li J, Cao Q F, Li Y X, Wang X S, Yao X 2014 Ceram. Int. 40 12477Google Scholar

    [18]

    Li W, Wang Z, Hao J G, Fu P, Du J, Chu R Q, Xu Z J 2018 J. Mater. Chem. C 6 11312Google Scholar

    [19]

    Liu Y, Luo H, Zhai D, Zeng L, Xiao Z, Hu Z, Wang X, Zhang D 2022 ACS Appl. Mater. Interfaces 14 19376Google Scholar

    [20]

    Qin Y L, Zhang S J, Wu Y Q, Lu C J, Zhang J L 2017 J. Eur. Ceram. Soc. 37 3493Google Scholar

    [21]

    Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026Google Scholar

    [22]

    Cao R P, Wang W H, Ren Y, Hu Z F, Zhou X C, Xu Y C, Luo Z Y, Liang A H 2021 J. Lumin. 235 118054Google Scholar

    [23]

    Sun H Q, Liu J, Wang X S, Zhang Q W, Hao X H, An S L 2017 J. Mater. Chem. C 5 9080Google Scholar

    [24]

    Lü J W, Li Q, Li Y, Tang M Y, Jin D L, Yan Y, Fan B Y, Jin L, Liu G 2021 Chem. Eng. J. 420 129900Google Scholar

    [25]

    Du P, Yu J S 2015 Ceram. Int. 41 6710Google Scholar

    [26]

    Said S, Marchet P, Merle Mejean T, Mercurio J P 2004 Mater. Lett. 58 1405Google Scholar

    [27]

    Choi H, Cho S H, Khan S, Lee K R, Kim S 2014 J. Mater. Chem. C 2 6017Google Scholar

    [28]

    Lun M M, Wang W, Xing Z F, Wan Z, Wu W Y, Song H Z, Wang Y Z, Li W, Chu B L, He Q Y 2019 J. Am. Ceram. Soc. 102 5243Google Scholar

    [29]

    Xue J P, Noh H M, Choi B C, Park S H, Kim J H, Jeong J H, Du P 2020 Chem. Eng. J. 382 122861Google Scholar

    [30]

    Li F F, Liu Y F, Lyu Y N, Qi Y H, Yu Z L, Lu C G 2017 Ceram. Int. 43 106Google Scholar

    [31]

    Han K, Luo N N, Chen Z P, Ma L, Chen X Y, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562Google Scholar

    [32]

    Zhang M H, Qi J L, Liu Y Q, Lan S, Luo Z X, Pan H, Lin Y H 2022 Rare Metals 41 730Google Scholar

    [33]

    Huang Y, Zhao C, Wu B, Zhang X 2022 J. Eur. Ceram. Soc. 42 2764Google Scholar

    [34]

    Muthuramalingam M, Ruth D E J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scr. Mater. 112 58Google Scholar

    [35]

    Zheng M, Guan P, Ji X 2023 CrystEngComm 25 541Google Scholar

    [36]

    Guan P F, Zhang Y X, Yang J, Zheng M 2023 Ceram. Int. 49 11796Google Scholar

    [37]

    Ma C L, Wang X Y, Tan W S, Zhou W P, Wang X X, Cheng Z Z, Chen G B, Zhai Z Y 2020 Dalton Trans. 49 5581Google Scholar

    [38]

    Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [39]

    Zhang Y M, Liang G C, Tang S L, Peng B L, Zhang Q, Liu L J, Sun W H 2020 Ceram. Int. 46 1343Google Scholar

    [40]

    杜金华, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703Google Scholar

    Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703Google Scholar

    [41]

    Wei T, Sun F C, Zhao C Z, Li C P, Yang M, Wang Y Q 2013 Ceram. Int. 39 9823Google Scholar

    [42]

    Singh V, Watanabe S, Rao T K G, Chubaci J F D, Kwak H Y 2010 J. Non-Cryst. Solids 356 1185Google Scholar

    [43]

    Raju G S R, Pavitra E, Patnam H, Varaprasad G L, Chodankar N R, Patil S J, Ranjith K S, Rao M V B, Yu J S, Park J Y, Huh Y S, Han Y K 2022 J. Alloys Compd. 903 163881Google Scholar

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能. 物理学报, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [3] 包定华. 稀土发光铁电薄膜的研究进展. 物理学报, 2020, 69(12): 127712. doi: 10.7498/aps.69.20200738
    [4] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [5] 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究. 物理学报, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [6] 王琴, 王逸伦, 王浩, 孙慧, 毛翔宇, 陈小兵. Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响. 物理学报, 2014, 63(14): 147701. doi: 10.7498/aps.63.147701
    [7] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质. 物理学报, 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [8] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [9] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [10] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究. 物理学报, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [11] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性. 物理学报, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [12] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究. 物理学报, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [13] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [14] 刘贵立. 稀土对镁合金应力腐蚀影响电子理论研究. 物理学报, 2006, 55(12): 6570-6573. doi: 10.7498/aps.55.6570
    [15] 丁庆磊, 肖思国, 张向华, 夏艳琴, 刘政威. 980 nm激发下Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的上转换发光特性. 物理学报, 2006, 55(10): 5140-5144. doi: 10.7498/aps.55.5140
    [16] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用. 物理学报, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [17] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [18] 彭爱华, 谢二庆, 姜 宁, 张志敏, 李 鹏, 贺德衍. 稀土(Tb,Gd)掺杂多孔硅的光致发光性能研究. 物理学报, 2003, 52(7): 1792-1796. doi: 10.7498/aps.52.1792
    [19] 许北雪, 吴锦雷, 邵庆益, 张兆祥, 刘惟敏, 薛增泉, 吴全德. 稀土镧对薄膜中银纳米粒子的细化作用. 物理学报, 2002, 51(5): 1103-1107. doi: 10.7498/aps.51.1103
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  2764
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-06-07
  • 上网日期:  2023-07-06
  • 刊出日期:  2023-09-05

/

返回文章
返回