搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟

段蒙悦 贾文柱 张莹莹 张逸凡 宋远红

引用本文:
Citation:

容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟

段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红

Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma

Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong
PDF
HTML
导出引用
  • 基于自主研发的二维流体尘埃模型, 研究了射频容性耦合硅烷等离子体放电中不同腔室结构对尘埃颗粒密度空间分布的影响. 模拟发现, 有别于一维模型, 径向电场和作用在尘埃颗粒上的离子拖拽力径向分量是导致尘埃颗粒密度分布径向不均匀的主要因素, 使其在极板边缘处呈现两个局部峰值, 其中一个峰值表明尘埃颗粒有可能会克服电场力的支撑更接近极板. 在极板半径较小或极板间距较小的情况下, 径向离子拖拽力的作用增强, 使尘埃颗粒更易于在极板边缘处和腔室侧壁附近聚集, 出现环状尘埃颗粒分布带. 在放电极板有介质材料包裹的情况下, 尘埃颗粒密度径向分布的均匀性得到改善. 最后, 还模拟了单个尘埃颗粒在极板边缘处的涡旋运动规律.
    In this work, we develop a two-dimensional fluid model to study the spatial density distributions of dust particles in a radio frequency capacitively coupled silane plasma. Unlike those scenarios based on the one-dimensional fluid model, in this work, the nonuniformity of the radial density distributions of dust particles is attributed mainly to the radial components of the electric field force and the ion drag force acting on the dust particles, leading to the two local density peaks near the electrode edges. It seems that dust particles tend to overcome the support of the electric field force and move much closer to the electrodes, as one of the density peaks indicates. Moreover, with the decrease of the radii of the discharge electrodes or the distance between them, the radial component of the ion drag force is enhanced, resulting in more dust particles gathering near the electrode edge region, and forming a ring-shaped particle density distribution. In the case of the discharge electrodes wrapped with dielectric materials, the uniformity of the radial density distributions of dust particles between the two electrodes is improved. Finally, the vortex motion of a single dust particle near the electrode edge region is also simulated in this work.
      通信作者: 宋远红, songyh@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12020101005, 11975067, 12005176, 12275039)资助的课题.
      Corresponding author: Song Yuan-Hong, songyh@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 11975067, 12005176, 12275039).
    [1]

    Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Techool. A 7 2758Google Scholar

    [2]

    Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I, Petrov O F 2004 Phys. Usp. 47 447Google Scholar

    [3]

    Melzer A, Nunomura S, Samsonov D, Ma Z W, Goree J 2000 Phys. Rev. E 62 4162Google Scholar

    [4]

    Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B, Möhlmann D 1994 Phys. Rev. Lett. 73 652Google Scholar

    [5]

    Ivlev A V, Steinberg V, Kompaneets R, Höfner H, Sidorenko I, Morfill G E 2007 Phys. Rev. Lett. 98 145003Google Scholar

    [6]

    Samsonov D, Goree J, Ma Z W, Bhattacharjee A, Thomas H M, Morfill G E 1999 Phys. Rev. Lett. 83 3649Google Scholar

    [7]

    Goree J, Morfill G E, Tsytovieh V N, Vladimirov S V 1999 Phys. Rev. E 59 7055Google Scholar

    [8]

    Chai K B, Bellan P M 2016 Phys. Plasmas 23 023701Google Scholar

    [9]

    Morfill G E, Thomas H M, Konopka U, Rothermel H, Zuzic M, Ivlev A, Goree J 1999 Phys. Rev. Lett. 83 1598Google Scholar

    [10]

    Akdim M R, Goedheer W J 2003 Phys. Rev. E 67 056405Google Scholar

    [11]

    Rozsa K, Bano G, Gallagher A 2001 IEEE Trans. Plasma Sci. 29 256Google Scholar

    [12]

    De Bleecker K, Bogaerts A, Goedheer W 2004 Phys. Rev. E 70 056407Google Scholar

    [13]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [14]

    Bleecker K D, Bogaerts A, Goedheer W 2006 New J. Phys. 8 178Google Scholar

    [15]

    Akdim M R, Goedheer W J 2003 J. Appl. Phys. 94 104Google Scholar

    [16]

    De Bleecker K, Bogaerts A, Goedheer W 2006 Phys. Rev. E 73 026405Google Scholar

    [17]

    Barnes M S, Keller J H, Forster J C, Neill J A, Coultas D K 1992 Phys. Rev. Lett. 68 313Google Scholar

    [18]

    Gallagher A, Howling A A, Hollenstein C 2002 J. Appl. Phys. 91 5571Google Scholar

    [19]

    Norberg S A, Johnsen E, Kushner M J 2015 Plasma Sources Sci. Technol. 24 035026Google Scholar

    [20]

    Boufendi L, Bouchoule A 1994 Plasma Sources Sci. Technol. 3 262Google Scholar

    [21]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, NJ, USA: John Wiley & Sons, Inc. ) pp23–43

  • 图 1  放电腔室结构示意图

    Fig. 1.  Schematic diagram of the capacitive reactor.

    图 2  z0 = 3 cm, R0 = 9 cm时, 等离子体中的密度空间分布 (a)电子; (b) $ {\text{SiH}}_3^ + $正离子; (c) $ {\text{SiH}}_3^ - $负离子; (d)尘埃颗粒

    Fig. 2.  Spatial density distributions in plasma at z0 = 3 cm and R0 = 9 cm: (a) Electron; (b) $ {\text{SiH}}_3^ + $; (c) $ {\text{SiH}}_3^ - $; (d) dust particles.

    图 3  z0 = 3 cm, R0 = 9 cm时, 尘埃颗粒所受电场力(a)轴向分量、(b)径向分量, 以及离子拖拽力(c)轴向分量、(d)径向分量的二维空间分布

    Fig. 3.  Spatial distributions of (a) axial component and (b) radial component of the electric field force, (c) axial component and (d) radial component of the ion drag force at z0 = 3 cm and R0 = 9 cm.

    图 4  (a) z = 3.88 cm 时, 径向离子拖拽力随r的变化; (b) $ {\text{SiH}}_3^ + $正离子通量矢量图(极板间距z0 = 3 cm, 电极半径R0 = 9 cm)

    Fig. 4.  (a) Radial component of the ion drag force along r direction at z = 3.88 cm; (b) flux vector map of $ {\text{SiH}}_3^ + $ (Gap distance z0 = 3 cm and the electrode radius R0 = 9 cm).

    图 5  极板间距z0 = 3 cm, 极板半径不同时, $ {\text{SiH}}_3^ + $密度(a)—(c), 尘埃颗粒密度(d)—(f), 离子拖拽力径向分量(g)—(i)的二维空间分布情况 (a), (d), (g) R0 = 9 cm; (b), (e), (h) R0 = 8 cm; (c), (f), (i) R0 = 7 cm

    Fig. 5.  Spatial distributions of $ {\text{SiH}}_3^ + $ densities (a)–(c), dust particles densities (d)–(f) and radial component of the ion drag force (g)–(i) at the different electrode radius and z0 = 3 cm: (a), (d), (g) R0 = 9 cm; (b), (e), (h) R0 = 8 cm; (c), (f), (i) R0 = 7 cm.

    图 6  电极半径R0 = 8 cm, 极板间距不同时, $ {\text{SiH}}_3^ + $ 密度(a)—(c), 尘埃颗粒密度(d)—(f), 离子拖拽力径向分量(g)—(i)的二维空间分布情况 (a), (d), (g) z0 = 3.0 cm; (b), (e), (h) z0 = 2.0 cm; (c), (f), (i) z0 = 1.4 cm

    Fig. 6.  Spatial distributions of (a)–(c) $ {\text{SiH}}_3^ + $ densities, (d)–(f) dust particles densities and (g)–(i) radial component of the ion drag force at the different electrode spacing and R0 = 8 cm: (a), (d), (g) z0 = 3.0 cm; (b), (e), (h) z0 = 2.0 cm; (c), (f), (i) z0 = 1.4 cm.

    图 7  z0 = 3 cm, R0 = 9 cm时, 上下极板在无介质层包裹和有介质层包裹的情况下 $ {\text{SiH}}_3^ + $密度(a), (b)和尘埃颗粒密度(c), (d)

    Fig. 7.  Spatial distributions of $ {\text{SiH}}_3^ + $ densities (a), (b) and dust particles densities (c), (d) in the case of discharge electrode without or with dielectric materials at z0 = 3 cm and R0 = 9 cm.

    图 8  上极板边缘(a)和下极板边缘(b)位置处的尘埃颗粒涡旋运动轨迹; 尘埃颗粒轴向位置(c), (d)及径向位置(e), (f)随时间演化过程(极板间距z0 = 3 cm, 电极半径R0 = 9 cm)

    Fig. 8.  Vortex trajectory of dust particles at the edge of (a) the upper plate and (b) the lower plate; axial position (c), (d) and radial position (e), (f) of dust particles over time (Gap distance z0 = 3 cm and the electrode radius R0 = 9 cm).

    表 1  除电子外, 模型中包含的不同粒子情况

    Table 1.  Overview of the different species incorporated in the model, besides the electrons.

    MoleculesIonsRadicals
    SiH4, SiH4(2-4), SiH4(1-3)$ {\text{SiH}}_3^ + , {\text{ S}}{{\text{i}}_{2}}{\text{H}}_4^ + $SiH3, Si2H4
    H2$ {\text{H}}_2^ + $H
    Si2H6, Si3H8, Si4H10, Si5H12$ \begin{gathered} {\text{S}}{{\text{i}}_{5}}{\text{H}}_5^ - , {\text{ S}}{{\text{i}}_{3}}{\text{H}}_7^ - , {\text{ S}}{{\text{i}}_{4}}{\text{H}}_9^ - , {\text{ S}}{{\text{i}}_{5}}{\text{H}}_{11}^ - ,\end{gathered} $

    $ {\text{S} }{ {\text{i} }_{2} }{\text{H} }_4^ - , {\text{ S} }{ {\text{i} }_3}{\text{H} }_6^ - , {\text{ S} }{ {\text{i} }_{4} }{\text{H} }_8^ - , {\text{ S} }{ {\text{i} }_{5} }{\text{H} }_{10}^ - , $
    dust
    Si2H5, Si3H7, Si4H9, Si5H11 , Si2H4, Si3H6, Si4H8, Si5H10
    下载: 导出CSV
  • [1]

    Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Techool. A 7 2758Google Scholar

    [2]

    Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I, Petrov O F 2004 Phys. Usp. 47 447Google Scholar

    [3]

    Melzer A, Nunomura S, Samsonov D, Ma Z W, Goree J 2000 Phys. Rev. E 62 4162Google Scholar

    [4]

    Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B, Möhlmann D 1994 Phys. Rev. Lett. 73 652Google Scholar

    [5]

    Ivlev A V, Steinberg V, Kompaneets R, Höfner H, Sidorenko I, Morfill G E 2007 Phys. Rev. Lett. 98 145003Google Scholar

    [6]

    Samsonov D, Goree J, Ma Z W, Bhattacharjee A, Thomas H M, Morfill G E 1999 Phys. Rev. Lett. 83 3649Google Scholar

    [7]

    Goree J, Morfill G E, Tsytovieh V N, Vladimirov S V 1999 Phys. Rev. E 59 7055Google Scholar

    [8]

    Chai K B, Bellan P M 2016 Phys. Plasmas 23 023701Google Scholar

    [9]

    Morfill G E, Thomas H M, Konopka U, Rothermel H, Zuzic M, Ivlev A, Goree J 1999 Phys. Rev. Lett. 83 1598Google Scholar

    [10]

    Akdim M R, Goedheer W J 2003 Phys. Rev. E 67 056405Google Scholar

    [11]

    Rozsa K, Bano G, Gallagher A 2001 IEEE Trans. Plasma Sci. 29 256Google Scholar

    [12]

    De Bleecker K, Bogaerts A, Goedheer W 2004 Phys. Rev. E 70 056407Google Scholar

    [13]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [14]

    Bleecker K D, Bogaerts A, Goedheer W 2006 New J. Phys. 8 178Google Scholar

    [15]

    Akdim M R, Goedheer W J 2003 J. Appl. Phys. 94 104Google Scholar

    [16]

    De Bleecker K, Bogaerts A, Goedheer W 2006 Phys. Rev. E 73 026405Google Scholar

    [17]

    Barnes M S, Keller J H, Forster J C, Neill J A, Coultas D K 1992 Phys. Rev. Lett. 68 313Google Scholar

    [18]

    Gallagher A, Howling A A, Hollenstein C 2002 J. Appl. Phys. 91 5571Google Scholar

    [19]

    Norberg S A, Johnsen E, Kushner M J 2015 Plasma Sources Sci. Technol. 24 035026Google Scholar

    [20]

    Boufendi L, Bouchoule A 1994 Plasma Sources Sci. Technol. 3 262Google Scholar

    [21]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, NJ, USA: John Wiley & Sons, Inc. ) pp23–43

  • [1] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [2] 杨孟奇, 吴福源, 陈致博, 张翼翔, 陈一, 张晋川, 陈致真, 方志凡, Rafael Ramis, 张杰. 高密度等离子体喷流高速对撞的二维辐射流体模拟研究. 物理学报, 2022, 71(22): 225202. doi: 10.7498/aps.71.20220948
    [3] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [4] 林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾. 热尘埃等离子体中(2 + 1)维尘埃声孤波的传播特征. 物理学报, 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [5] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [6] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [7] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解. 物理学报, 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [8] 宫卫华, 张永亮, 冯帆, 刘富成, 贺亚峰. 非均匀磁场尘埃等离子体中颗粒的复杂运动. 物理学报, 2015, 64(19): 195202. doi: 10.7498/aps.64.195202
    [9] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [11] 张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来. 修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性. 物理学报, 2013, 62(9): 095201. doi: 10.7498/aps.62.095201
    [12] 赵晓云, 张丙开, 张开银. 两种带电尘埃颗粒的等离子体鞘层玻姆判据. 物理学报, 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [13] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [14] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [15] 吴静, 刘国, 姚列明, 段旭如. 等离子体鞘层附近尘埃颗粒特性的数值模拟. 物理学报, 2012, 61(7): 075205. doi: 10.7498/aps.61.075205
    [16] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [17] 袁强华, 辛 煜, 黄晓江, 孙 恺, 宁兆元. 13.56 MHz 低频功率对60 MHz射频容性耦合等离子体的电特性的影响. 物理学报, 2008, 57(11): 7038-7043. doi: 10.7498/aps.57.7038
    [18] 奚衍斌, 张 宇, 王晓钢, 刘 悦, 余 虹, 姜东光. 调制磁场清除柱形等离子体发生器中的尘埃颗粒. 物理学报, 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [19] 侯璐景, 王友年. 尘埃颗粒在射频等离子体鞘层中的非线性共振现象的理论研究. 物理学报, 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
    [20] 王 龙. 等离子体中的颗粒成长模型. 物理学报, 1999, 48(6): 1072-1077. doi: 10.7498/aps.48.1072
计量
  • 文章访问数:  3433
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-06-03
  • 上网日期:  2023-06-06
  • 刊出日期:  2023-08-20

/

返回文章
返回