-
得益于铝镓氮/氮化镓异质结材料较大的禁带宽度、较高的击穿场强以及异质界面存在的高面密度及高迁移率的二维电子气, 基于该异质结材料的器件在高压大功率及微波射频方面具有良好的应用前景, 尤其是随着大尺寸硅基氮化镓材料外延技术的逐渐成熟, 低成本的氮化镓器件在消费电子方面也展现出极大的优势. 为了提高铝镓氮/氮化镓肖特基二极管的整流效率, 通常要求器件具有较小的开启电压、较低的反向漏电和较高的击穿电压, 采用低功函数金属阳极结构能有效降低器件开启电压, 但较低的阳极势垒高度使器件易受界面缺陷的影响, 导致器件反向漏电增大. 本文采用一种新型的基于热氧氧化及氢氧化钾腐蚀的低损伤阳极凹槽制备技术, 解决了常规干法刻蚀引入的表面等离子体损伤难题, 使凹槽表面粗糙度由0.57 nm降低至0.23 nm, 器件阳极反向偏置为–1 kV时的漏电流密度由1.5 × 10–6 A/mm降低至2.6 × 10–7 A/mm, 另外, 由于热KOH溶液对热氧氧化后的AlGaN势垒层及GaN沟道层具有良好的腐蚀选择比, 因此避免了干法刻蚀腔体中由于等离子体分布不均匀导致的边缘刻蚀尖峰问题, 使器件反向耐压由–1.28 kV提升至–1.73 kV, 器件性能得到极大提升.AlGaN/GaN heterojunction epitaxies with wide bandgap, high critical electric field as well as high density and high mobility two-dimensional electron gas have shown great potential applications in the next-generation high-power and high-frequency devices. Especially, with the development of Si-based GaN epitaxial technique with big size, GaN devices with low cost also show great advantage in consumer electronics. In order to improve the rectification efficiency of AlGaN/GaN Schottky barrier diode (SBD), low leakage current and low turn-on voltage are important. The GaN Schottky barrier diode with low work-function metal as anode is found to be very effective to reduce turn-on voltage. However, the low Schottky barrier height makes the Schottky interface sensitive to damage to groove surface, which leads to a high leakage current. In this work, a novel wet-etching technique with thermal oxygen oxidation and KOH corrosion is used to prepare the anode groove, and the surface roughness of groove decreases from 0.57 to 0.23 nm, compared with that of the dry-etching surface of groove. Meanwhile, the leakage current is suppressed from 1.5 × 10–6 to 2.6 × 10–7 A/mm. Benefiting from the great corrosion selectively of hot KOH solution to AlGaN barrier layer and GaN channel layer after thermal oxygen oxidation, the spikes of the edge of groove region caused by the nonuniform distribution of plasma in the cavity is improved, and the breakdown voltage of the fabricated AlGaN/GaN SBDs is raised from –1.28 to –1.73 kV.
-
Keywords:
- AlGaN/GaN /
- Schottky barrier diode /
- low leakage current /
- high breakdown voltage
[1] Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H 2008 Appl. Phys. Express 1 011105Google Scholar
[2] Guo Z B, Hitchcock C, Wetzel C, Karlicek R F, Jr, Piao G X, Yano Y, Koseki S, Tabuchi T, Matsumoto K, Bulsara M, Chow T P 2019 IEEE Electr. Device L. 40 1736Google Scholar
[3] Liu L, Wang J, Wang H Y, Ren N, Guo Q, Sheng K 2022 IEEE Electr. Device L. 43 104Google Scholar
[4] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 70 116102
Rui C, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102
[5] Hu J, Stoffels S, Zhao M, Tallarico A N, Rossetto I, Meneghini M, Kang X W, Bakeroot B, Marcon D, Kaczer B, Decoutere S, Groeseneken G 2017 IEEE Electron Dev. Lett. 38 371Google Scholar
[6] Xu W Z, Zhou F, Liu Q, Ren F F, Zhou D, Chen D J, Zhang R, Zheng Y D, Lu H 2021 IEEE Electron Dev. Lett. 42 1743Google Scholar
[7] Li X D, Geens K, Guo W M, You S Z, Zhao M, Fahle D, Odnoblyudov V, Groeseneken G, Decoutere S 2019 IEEE Electron Dev. Lett. 40 1499Google Scholar
[8] Nela L, Kampitsis G, Ma J, Matioli E 2020 IEEE Electron Dev. Lett. 41 99Google Scholar
[9] Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H L G 2015 IEEE Electron Dev. Lett. 36 375Google Scholar
[10] Liu C, Khadar R A, Matioli E 2018 IEEE Electron Dev. Lett. 39 71Google Scholar
[11] Zhang Y H, Sun M, Wong H Y, Lin Y X, Srivastava P, Hatem C, Azize M, Piedra D, Yu L L, Sumitomo T, Braga N D A, Mickevicius R V, Palacios T 2015 IEEE Trans. Electron Dev. 62 2155Google Scholar
[12] Zhang T, Zhang J C, Zhou H, Wang Y, Chen T S, Zhang K, Zhang Y C, Dang K, Bian Z K, Zhang J F, Xu S R, Duan X L, Ning J, Hao Y 2019 IEEE Electron Dev. Lett. 40 1583Google Scholar
[13] Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Dev. 68 2661Google Scholar
[14] 武鹏, 张涛, 张进成, 郝跃 2022 物理学报 158503
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 158503
[15] Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Dev. Lett. 37 70Google Scholar
[16] Xu R, Chen P, Liu M H, Zhou J, Li Y M, Cheng K, Liu B, Chen D J, Xie Z L, Zhang R, Zheng Y D 2021 IEEE Electron Dev. Lett. 42 208Google Scholar
[17] Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Dev. Lett. 36 660Google Scholar
[18] Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Dev. Lett. 38 1425Google Scholar
[19] Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 997Google Scholar
[20] Lei J C, Wei J, Tang G F, Zhang Z F, Qian Q K, Zheng Z Y, Hua M Y, Chen K J 2018 IEEE Electron Dev. Lett. 39 260Google Scholar
[21] Ma J, Matioli E 2017 IEEE Electron Dev. Lett. 38 83Google Scholar
[22] Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar
[23] Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 7
[24] Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J, Shen B 2013 IEEE Electron Dev. Lett. 34 11
[25] Xu Z, Wang J Y, Liu J Q, Jin C Y, Cai Y, Yang Z C, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C, Hao Y 2014 IEEE Electron Dev. Lett. 35 12Google Scholar
[26] Carin R, Deville J P, Werckmann J 1990 Sur. Interface Anal. 16 65Google Scholar
[27] Bian Z K, Zhang J C, Zhao S L, Zhang Y C, Duan X L, Chen J B, Ning J, Hao Y 2020 IEEE Electron Dev. Lett. 41 10
-
-
[1] Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H 2008 Appl. Phys. Express 1 011105Google Scholar
[2] Guo Z B, Hitchcock C, Wetzel C, Karlicek R F, Jr, Piao G X, Yano Y, Koseki S, Tabuchi T, Matsumoto K, Bulsara M, Chow T P 2019 IEEE Electr. Device L. 40 1736Google Scholar
[3] Liu L, Wang J, Wang H Y, Ren N, Guo Q, Sheng K 2022 IEEE Electr. Device L. 43 104Google Scholar
[4] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 70 116102
Rui C, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102
[5] Hu J, Stoffels S, Zhao M, Tallarico A N, Rossetto I, Meneghini M, Kang X W, Bakeroot B, Marcon D, Kaczer B, Decoutere S, Groeseneken G 2017 IEEE Electron Dev. Lett. 38 371Google Scholar
[6] Xu W Z, Zhou F, Liu Q, Ren F F, Zhou D, Chen D J, Zhang R, Zheng Y D, Lu H 2021 IEEE Electron Dev. Lett. 42 1743Google Scholar
[7] Li X D, Geens K, Guo W M, You S Z, Zhao M, Fahle D, Odnoblyudov V, Groeseneken G, Decoutere S 2019 IEEE Electron Dev. Lett. 40 1499Google Scholar
[8] Nela L, Kampitsis G, Ma J, Matioli E 2020 IEEE Electron Dev. Lett. 41 99Google Scholar
[9] Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H L G 2015 IEEE Electron Dev. Lett. 36 375Google Scholar
[10] Liu C, Khadar R A, Matioli E 2018 IEEE Electron Dev. Lett. 39 71Google Scholar
[11] Zhang Y H, Sun M, Wong H Y, Lin Y X, Srivastava P, Hatem C, Azize M, Piedra D, Yu L L, Sumitomo T, Braga N D A, Mickevicius R V, Palacios T 2015 IEEE Trans. Electron Dev. 62 2155Google Scholar
[12] Zhang T, Zhang J C, Zhou H, Wang Y, Chen T S, Zhang K, Zhang Y C, Dang K, Bian Z K, Zhang J F, Xu S R, Duan X L, Ning J, Hao Y 2019 IEEE Electron Dev. Lett. 40 1583Google Scholar
[13] Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Dev. 68 2661Google Scholar
[14] 武鹏, 张涛, 张进成, 郝跃 2022 物理学报 158503
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 158503
[15] Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Dev. Lett. 37 70Google Scholar
[16] Xu R, Chen P, Liu M H, Zhou J, Li Y M, Cheng K, Liu B, Chen D J, Xie Z L, Zhang R, Zheng Y D 2021 IEEE Electron Dev. Lett. 42 208Google Scholar
[17] Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Dev. Lett. 36 660Google Scholar
[18] Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Dev. Lett. 38 1425Google Scholar
[19] Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 997Google Scholar
[20] Lei J C, Wei J, Tang G F, Zhang Z F, Qian Q K, Zheng Z Y, Hua M Y, Chen K J 2018 IEEE Electron Dev. Lett. 39 260Google Scholar
[21] Ma J, Matioli E 2017 IEEE Electron Dev. Lett. 38 83Google Scholar
[22] Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar
[23] Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 7
[24] Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J, Shen B 2013 IEEE Electron Dev. Lett. 34 11
[25] Xu Z, Wang J Y, Liu J Q, Jin C Y, Cai Y, Yang Z C, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C, Hao Y 2014 IEEE Electron Dev. Lett. 35 12Google Scholar
[26] Carin R, Deville J P, Werckmann J 1990 Sur. Interface Anal. 16 65Google Scholar
[27] Bian Z K, Zhang J C, Zhao S L, Zhang Y C, Duan X L, Chen J B, Ning J, Hao Y 2020 IEEE Electron Dev. Lett. 41 10
计量
- 文章访问数: 2818
- PDF下载量: 76
- 被引次数: 0