搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌光注入半导体激光器中极端事件的演变

戈杉杉 王腾午 戈静怡 周沛 李念强

引用本文:
Citation:

混沌光注入半导体激光器中极端事件的演变

戈杉杉, 王腾午, 戈静怡, 周沛, 李念强

Evolution of extreme events in chaotic light-injected semiconductor lasers

Ge Shan-Shan, Wang Teng-Wu, Ge Jing-Yi, Zhou Pei, Li Nian-Qiang
PDF
HTML
导出引用
  • 基于相位共轭光反馈混沌激光系统(主激光器)产生的极端事件, 研究了将其输出注入到一个自由运行的半导体激光器(从激光器)的演化情况. 通过注入参数空间中极端事件相对数量的二维统计图分析注入参数对极端事件产生的影响, 发现在主从激光器混沌输出高相关性参数区域, 从激光器中的极端事件的相对数量趋向于一个接近主激光器中极端事件相对数量的稳定值; 在某些特定的弱相关区域, 从激光器中的极端事件的相对数量趋向于增加. 研究结果证明了通过光注入控制极端事件的可能性, 有利于优化混沌激光系统性能或拓展其应用场景.
    Rare ultrahigh pulses, classified as rogue waves (RWs), are inevitable and catastrophic in many different systems. Considering the damage they may produce, it is meaningful to understand the formation mechanism of these pulses and, if possible, control them. However, the rarity of RW and the difficulty in implementing the experiment are major limitations to understanding their formation. In 2007, Solli et al. (Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054) introduced the concept of optical RW, i.e. extreme event (EE) by comparing the appearance of oceanic RWs with the propagation of light fields in optical fibers. After that, the research of EEs entered into a flourishing period and different optical systems were proposed to analyze the generation and origin of EEs. Linear system is one of the most widely studied EE systems, such as linear light propagation in glass fibers, random media, and linear interference models. In addition to the linear systems mentioned above, efforts have also been made to produce nonlinear systems of EEs, such as microstructure fibers and tapered gradient exponential nonlinear fibers. In these nonlinear systems, the formation mechanism of EE is studied by using the nonlinear Schrödinger equation. Recently, the EEs in semiconductor laser systems have received a great deal of attention. On the one hand, semiconductor lasers with rich dynamic properties provide a cheap and controllable platform for understanding and predicting EE. The behavior of EE, on the other hand, is a powerful tool for understanding the fundamental mechanism of different laser systems.In this work, based on the EEs generated in a semiconductor laser with phase-conjugate optical feedback (the master laser, ML), we inject its output into another free-running semiconductor laser (the slave laser, SL) and discuss the evolution of EEs in the system by numerical simulation. Herein, we analyze the influence of injection parameters on EEs through the two-dimensional maps of the relative number of EEs in the injection-parameter space. It can be concluded that in an area of high correlation, the relative number of EEs in SL tends to be a stationary value close to that in ML, while it may be enhanced in some weakly correlated regions. The results demonstrate the possibility of controlling EEs by optical injection, which is beneficial to optimizing the performance of chaotic laser systems or expanding their application scope.
      通信作者: 周沛, peizhou@suda.edu.cn ; 李念强, nli@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62004135, 62001317, 62171305, 62111530301)、江苏省高等学校自然科学研究重大项目(批准号: 20KJA416001, 20KJB510011)和江苏省自然科学基金(批准号: BK20200855)资助的课题.
      Corresponding author: Zhou Pei, peizhou@suda.edu.cn ; Li Nian-Qiang, nli@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004135, 62001317, 62171305, 62111530301), the Natural Science Research Project of Jiangsu Higher Education Institutions of China (Grant Nos. 20KJA416001, 20KJB510011), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200855).
    [1]

    Talouneh K, Rimoldi C, Kheradmand R, Tissoni G, Eslami M 2020 Phys. Rev. A 102 033508Google Scholar

    [2]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [3]

    Arecchi F T, Bortolozzo U, Montina A, Residori S 2011 Phys. Rev. Lett. 106 153901Google Scholar

    [4]

    Metzger J J, Fleischmann R, Geisel T 2014 Phys. Rev. Lett. 112 203903Google Scholar

    [5]

    Birkholz S, Bree C, Veselic I, Demircan A, Steinmeyer G 2016 Sci. Rep. 6 35207Google Scholar

    [6]

    Kumar C N, Gupta R, Goyal A, Loomba S, Raju T S, Panigrahi P K 2012 Phys. Rev. A 86 025802Google Scholar

    [7]

    Dal Bosco A K, Wolfersberger D, Sciamanna M 2013 Opt. Lett. 38 703Google Scholar

    [8]

    Reinoso J A, Zamora-Munt J, Masoller C 2013 Phys. Rev. E 87 062913Google Scholar

    [9]

    Zamora-Munt J, Garbin B, Barland S, Giudici M, Leite J R R, Masoller C, Tredicce J R 2013 Phys. Rev. A 87 035802Google Scholar

    [10]

    Ahuja J, Nalawade D B, Zamora-Munt J, Vilaseca R, Masoller C 2014 Opt. Express 22 28377Google Scholar

    [11]

    Perrone S, Vilaseca R, Zamora-Munt J, Masoller C 2014 Phys. Rev. A 89 033804Google Scholar

    [12]

    Mercier E, Even A, Mirisola E, Wolfersberger D, Sciamanna M 2015 Phys. Rev. E 91 042914Google Scholar

    [13]

    Choi D, Wishon M J, Barnoud J, Chang C Y, Bouazizi Y, Locquet A, Citrin D S 2016 Phys. Rev. E 93 042216Google Scholar

    [14]

    Lee M W, Baladi F, Burie J R, Bettiati M A, Boudrioua A, Fischer A P 2016 Opt. Lett. 41 4476Google Scholar

    [15]

    Jin T, Siyu C, Masoller C 2017 Opt. Express 25 31326Google Scholar

    [16]

    Uy C H, Rontani D, Sciamanna M 2017 Opt. Lett. 42 2177Google Scholar

    [17]

    Huang Y, Zhou P, Zeng Y, Zhang R H, Li N Q 2022 Phys. Rev. A 105 043521Google Scholar

    [18]

    Li X Z, Zhou X Q, Gu Y Y, Zhao M S 2022 IEEE J. Sel. Top. Quantum Electron. 28 0600108Google Scholar

    [19]

    Bonatto C, Feyereisen M, Barland S, Giudici M, Masoller C, Leite J R, Tredicce J R 2011 Phys. Rev. Lett. 107 053901Google Scholar

    [20]

    Jiang N, Zhao A, Xue C, Tang J, Qiu K 2019 Opt. Lett. 44 1536Google Scholar

    [21]

    Lawrence J S, Kane D M 2001 Phys. Rev. A 63 033805Google Scholar

    [22]

    Rontani D, Mercier E, Wolfersberger D, Sciamanna M 2016 Opt. Lett. 41 4637Google Scholar

    [23]

    Feinberg J 1982 Opt. Lett. 7 486Google Scholar

    [24]

    Jiang N, Zhao A, Liu S, Zhang Y, Peng J, Qiu K 2020 Opt. Express 28 9477Google Scholar

    [25]

    Mu P, Pan W, Yan L, Luo B, Zou X 2017 IEEE Photonics J. 9 1Google Scholar

    [26]

    Zhang R, Zhou P, Yang Y, Fang Q, Mu P, Li N 2020 Opt. Express 28 7197Google Scholar

    [27]

    Mu P H, Pan W, Li N Q 2018 Opt. Express 26 15642Google Scholar

    [28]

    Huang Y, Zhou P, Li N Q 2021 Opt. Express 29 19675Google Scholar

    [29]

    Zhao A, Jiang N, Peng J, Liu S, Zhang Y, Qiu K 2022 Opto-Electron. Adv. 5 200026Google Scholar

    [30]

    Zeng Y, Zhou P, Huang Y, Li N 2022 Opt. Lett. 47 142Google Scholar

    [31]

    Rimoldi C, Barland S, Prati F, Tissoni G 2017 Phys. Rev. A 95 023841Google Scholar

    [32]

    Tlidi M, Panajotov K 2017 Chaos 27 013119Google Scholar

  • 图 1  ML的时序图和峰值强度的统计分布图(红色虚线和竖线代表极端事件的阈值AI = 2) (a) kf = 9 ns–1; (b) kf = 15 ns–1; (c) kf = 30 ns–1

    Fig. 1.  Time series and statistical distributions of peak intensity in ML (Red dashed lines and vertical lines represent the threshold of EEs, AI = 2): (a) kf = 9 ns–1; (b) kf = 15 ns–1; (c) kf = 30 ns–1.

    图 2  kf = 15 ns–1, kinj = 100 ns–1时, SL的时序图和峰值强度的统计分布图 (红色虚线和竖线代表极端事件的阈值AI = 2) (a) Δf = 15 GHz; (b) Δf = 0 GHz; (c) Δf = –20 GHz

    Fig. 2.  Time series and statistical distributions of peak intensity in SL at kf = 15 ns–1 and kinj = 100 ns–1 (Red dashed lines and vertical lines represent the threshold of EEs, AI = 2): (a) Δf = 15 GHz; (b) Δf = 0 GHz; (c) Δf = –20 GHz.

    图 3  SL中EE的相对数量随着注入强度变化情况(灰色虚线代表ML中EE的相对数量) (a) kf = 9 ns–1; (b) kf = 15 ns–1; (c) kf = 30 ns–1

    Fig. 3.  Relative number of EEs versus injection strength (Gray dashed lines represent the relative number of EEs in ML): (a) kf = 9 ns–1; (b) kf = 15 ns–1; (c) kf = 30 ns–1.

    图 4  COIS-PCF中EE相对数量在注入参数空间内的二维图(a1)—(c1)以及对应的主从激光器互相关系数的二维映射图(a2)—(c2) (a) kf = 9 ns–1; (b) kf = 15 ns–1; (c) kf = 30 ns–1

    Fig. 4.  Maps of relative number of EEs generated from the COIS-PCF in the injection-parameter space (a1)–(c1) and corresponding CC between the ML and SL (a2)–(c2): (a) kf = 9 ns–1; (b) kf = 15 ns–1; (c) kf = 30 ns–1.

    图 5  kf = 30 ns–1时, ML的时序图和峰值强度的统计分布图 (红色虚线代表极端事件的阈值AI = 2) (a) JM = 1.05Jth; (b) JM = 1.30Jth; (c) JM = 1.50Jth; (d) JM = 2.00Jth

    Fig. 5.  Time series and statistical distributions of peak intensity in ML at kf = 30 ns–1 (Red dashed lines and vertical lines represent the threshold of EEs, AI = 2): (a) JM = 1.05Jth; (b) JM = 1.30Jth; (c) JM = 1.50Jth; (d) JM = 2.00Jth.

    图 6  COIS-PCF中EE相对数量在注入参数空间内的二维图(a1)—(d1)以及对应的主从激光器互相关系数(a2)—(d2) (a) JM = 1.05Jth; (b) JM = 1.30Jth; (c) JM = 1.50Jth; (d) JM = 2.00Jth

    Fig. 6.  Maps of relative number of EEs generated from the COIS-PCF in the injection-parameter space (a1)–(d1) and corresponding CC between the ML and SL (a2)–(d2): (a) JM = 1.05Jth; (b) JM = 1.30Jth; (c) JM = 1.50Jth; (d) JM = 2.00Jth.

  • [1]

    Talouneh K, Rimoldi C, Kheradmand R, Tissoni G, Eslami M 2020 Phys. Rev. A 102 033508Google Scholar

    [2]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [3]

    Arecchi F T, Bortolozzo U, Montina A, Residori S 2011 Phys. Rev. Lett. 106 153901Google Scholar

    [4]

    Metzger J J, Fleischmann R, Geisel T 2014 Phys. Rev. Lett. 112 203903Google Scholar

    [5]

    Birkholz S, Bree C, Veselic I, Demircan A, Steinmeyer G 2016 Sci. Rep. 6 35207Google Scholar

    [6]

    Kumar C N, Gupta R, Goyal A, Loomba S, Raju T S, Panigrahi P K 2012 Phys. Rev. A 86 025802Google Scholar

    [7]

    Dal Bosco A K, Wolfersberger D, Sciamanna M 2013 Opt. Lett. 38 703Google Scholar

    [8]

    Reinoso J A, Zamora-Munt J, Masoller C 2013 Phys. Rev. E 87 062913Google Scholar

    [9]

    Zamora-Munt J, Garbin B, Barland S, Giudici M, Leite J R R, Masoller C, Tredicce J R 2013 Phys. Rev. A 87 035802Google Scholar

    [10]

    Ahuja J, Nalawade D B, Zamora-Munt J, Vilaseca R, Masoller C 2014 Opt. Express 22 28377Google Scholar

    [11]

    Perrone S, Vilaseca R, Zamora-Munt J, Masoller C 2014 Phys. Rev. A 89 033804Google Scholar

    [12]

    Mercier E, Even A, Mirisola E, Wolfersberger D, Sciamanna M 2015 Phys. Rev. E 91 042914Google Scholar

    [13]

    Choi D, Wishon M J, Barnoud J, Chang C Y, Bouazizi Y, Locquet A, Citrin D S 2016 Phys. Rev. E 93 042216Google Scholar

    [14]

    Lee M W, Baladi F, Burie J R, Bettiati M A, Boudrioua A, Fischer A P 2016 Opt. Lett. 41 4476Google Scholar

    [15]

    Jin T, Siyu C, Masoller C 2017 Opt. Express 25 31326Google Scholar

    [16]

    Uy C H, Rontani D, Sciamanna M 2017 Opt. Lett. 42 2177Google Scholar

    [17]

    Huang Y, Zhou P, Zeng Y, Zhang R H, Li N Q 2022 Phys. Rev. A 105 043521Google Scholar

    [18]

    Li X Z, Zhou X Q, Gu Y Y, Zhao M S 2022 IEEE J. Sel. Top. Quantum Electron. 28 0600108Google Scholar

    [19]

    Bonatto C, Feyereisen M, Barland S, Giudici M, Masoller C, Leite J R, Tredicce J R 2011 Phys. Rev. Lett. 107 053901Google Scholar

    [20]

    Jiang N, Zhao A, Xue C, Tang J, Qiu K 2019 Opt. Lett. 44 1536Google Scholar

    [21]

    Lawrence J S, Kane D M 2001 Phys. Rev. A 63 033805Google Scholar

    [22]

    Rontani D, Mercier E, Wolfersberger D, Sciamanna M 2016 Opt. Lett. 41 4637Google Scholar

    [23]

    Feinberg J 1982 Opt. Lett. 7 486Google Scholar

    [24]

    Jiang N, Zhao A, Liu S, Zhang Y, Peng J, Qiu K 2020 Opt. Express 28 9477Google Scholar

    [25]

    Mu P, Pan W, Yan L, Luo B, Zou X 2017 IEEE Photonics J. 9 1Google Scholar

    [26]

    Zhang R, Zhou P, Yang Y, Fang Q, Mu P, Li N 2020 Opt. Express 28 7197Google Scholar

    [27]

    Mu P H, Pan W, Li N Q 2018 Opt. Express 26 15642Google Scholar

    [28]

    Huang Y, Zhou P, Li N Q 2021 Opt. Express 29 19675Google Scholar

    [29]

    Zhao A, Jiang N, Peng J, Liu S, Zhang Y, Qiu K 2022 Opto-Electron. Adv. 5 200026Google Scholar

    [30]

    Zeng Y, Zhou P, Huang Y, Li N 2022 Opt. Lett. 47 142Google Scholar

    [31]

    Rimoldi C, Barland S, Prati F, Tissoni G 2017 Phys. Rev. A 95 023841Google Scholar

    [32]

    Tlidi M, Panajotov K 2017 Chaos 27 013119Google Scholar

  • [1] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [2] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [3] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [4] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信. 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [5] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [6] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [7] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [8] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [9] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [10] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [11] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [12] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [13] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [14] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [15] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [16] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [17] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [18] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [19] 崔碧峰, 李建军, 邹德恕, 廉 鹏, 韩金茹, 王东凤, 杜金玉, 刘 莹, 赵慧敏, 沈光地. 大光腔小垂直发散角InGaAs/GaAs/AlGaAs半导体激光器. 物理学报, 2004, 53(7): 2150-2153. doi: 10.7498/aps.53.2150
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  2991
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-05-29
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回