搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维kagome晶格过渡金属酞菁基异质结的电子性质

姜舟 蒋雪 赵纪军

引用本文:
Citation:

二维kagome晶格过渡金属酞菁基异质结的电子性质

姜舟, 蒋雪, 赵纪军

Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions

Jiang Zhou, Jiang Xue, Zhao Ji-Jun
PDF
HTML
导出引用
  • 过渡金属酞菁分子作为二维有机金属框架材料的重要构建单元, 在光学、电子学、磁学等领域展示了潜能. 经理论预测, 一系列具有kagome晶格的二维磁性过渡金属酞菁框架材料(kag-TMPc)在自旋电子学、光电子学领域具有应用前景. 本文采用第一性原理计算, 研究了叠状kag-TMPc基异质结中层间耦合对电磁性质的影响. 结果表明kag-MnPc基异质结能够保持单层材料的带隙特性, 带隙在0.17 eV左右, 其中AA和AB堆垛的kag-MnPc/ZnPc为铁磁性半导体, 磁交换能量在40 meV以上; kag-MnPc/MnPc在从AA堆叠转变至AB堆叠的过程中, 由磁性半金属变成为磁性半导体. 特别地, AB堆叠的kag-CuPc/CoPc异质结具有亚铁磁半导体特征, 并且能带排列方式与层间距相关: 层间距在平衡位置时, 两个自旋方向能带排列均为I型; 当层间距增大0.2 Å时, 在自旋向上能带为I型能带排列, 自旋向下为II型能带排列, 具备自旋相关的光电“开关”特性. 本文的结果表明, 层间耦合效应是调控二维磁性有机材料电子性质的有效方式, 为设计磁场调制的新型电磁和光电器件提供了理论参考.
    Transition metal phthalocyanine molecules serve as building blocks for two-dimensional (2D) metal-organic frameworks with potential applications in optics, electronics, and spintronics. Previous theoretical studies predicted that a two-dimensional transition metal phthalocyanine framework with kagome lattice (kag-TMPc) has stable magnetically ordered properties, which are promising for spintronics and optoelectronics. However, there is a lack of studies on their heterojunctions, which can effectively tune the properties through interlayer coupling despite its weak nature. Here we use the density functional theory (DFT) to calculate the electronic properties of eight representative 2D kag-TMPc vertical heterojunctions with two different stackings (AA and AB) and interlayer distances. We find that most of the kag-MnPc-based heterojunctions can maintain the electronic properties of monolayer materials with low bandgap. The kag-MnPc/ZnPc is a ferromagnetic semiconductor with magnetic exchange energy above 40 meV, regardless of stacking sequences; the electronic properties of kag-MnPc/MnPc heterojunctions change from magnetic half-metal to magnetic semiconductor during the transition from AA stacking to AB stacking. Interestingly, the AB stacked kag-CuPc/CoPc heterojunction is a ferromagnetic semiconductor, and the spin-polarized energy band arrangement changes with the layer spacing: when the layer spacing is as long as the equilibrium distance, the spin-up and spin-down energy bands are aligned as type II; when the layer spacing increases by 0.2 Å, the spin-up energy bands are aligned as type-I energy bands, while the spin-down energy bands are aligned as type-II energy bands. This distance-dependent spin properties can realize magnetic optoelectronic “switching” and has potential applications in new magnetic field modulated electromagnetic and optoelectronic devices.
      通信作者: 赵纪军, zhaojj@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274050)资助的课题.
      Corresponding author: Zhao Ji-Jun, zhaojj@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274050).
    [1]

    Lu S, Liu L B, Demissie H, An G Y, Wang D S 2021 Environ. Int. 146 106273Google Scholar

    [2]

    Wei X Q, Shao D, Xue C L, Qu X Y, Chai J, Li J Q, Du Y E, Chen Y Q 2020 CrystEngComm 22 5275Google Scholar

    [3]

    Thorarinsdottir A E, Harris T D 2020 Chem. Rev. 120 8716Google Scholar

    [4]

    Van Heumen E 2021 Nat. Mater. 20 1308Google Scholar

    [5]

    Yang Y X, Fan W H, Zhang Q H, Chen Z X, Chen X, Ying T P, Wu X X, Yang X F, Meng F Q, Li G, Li S Y, Gu L, Qian T, Schnyder A P, Guo J G, Chen X L 2021 Chin. Phys. Lett. 38 127102Google Scholar

    [6]

    Zeng K Y, Song F Y, Ling L S, Tong W, Li S L, Tian Z M, Ma L, Pi L 2022 Chin. Phys. Lett. 39 107501Google Scholar

    [7]

    Yang Y Y, Chen K W, Ding Z F, Hillier A D, Shu L 2022 Chin. Phys. Lett. 39 107502Google Scholar

    [8]

    Chen H Q, Shan H, Zhao A D, Li B 2019 Chin. J. Chem. Phys. 32 563Google Scholar

    [9]

    Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H 2013 J. Am. Chem. Soc. 135 2462Google Scholar

    [10]

    Wang Z F, Su N H, Liu F 2013 Nano Lett. 13 2842Google Scholar

    [11]

    Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L 2011 J. Am. Chem. Soc. 133 1203Google Scholar

    [12]

    Zhou J, Sun Q 2011 J. Am. Chem. Soc. 133 15113Google Scholar

    [13]

    Xu Y N, Gu Z Q, Ching W Y 2000 J. Appl. Phys. 87 4867Google Scholar

    [14]

    Lü K, Zhou J, Zhou L, Wang Q, Sun Q, Jena P 2011 Appl. Phys. Lett. 99 163104Google Scholar

    [15]

    Xie L S, Jin G X, He L, Bauer G E W, Barker J, Xia K 2017 Phys. Rev. B 95 014423Google Scholar

    [16]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [17]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [18]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotech. 5 722Google Scholar

    [19]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B, Chen H 2013 J. Mater. Chem. C 1 1618Google Scholar

    [20]

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [21]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [26]

    Panchmatia P M, Sanyal B, Oppeneer P M 2008 Chemical Physics 343 47Google Scholar

    [27]

    Bernien M, Miguel J, Weis C, Ali Md E, Kurde J, Krumme B, Panchmatia P M, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer P M, Eriksson O, Kuch W, Wende H 2009 Phys. Rev. Lett. 102 047202Google Scholar

    [28]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [29]

    Ningrum V P, Liu B, Wang W, Yin Y, Cao Y, Zha C, Xie H, Jiang X, Sun Y, Qin S, Chen X, Qin T, Zhu C, Wang L, Huang W 2020 Research 2020 1768918Google Scholar

    [30]

    Jiang X, Jiang Z, Zhao J J 2017 Appl. Phys. Lett. 111 253904Google Scholar

    [31]

    Yu J T, Jiang Z, Hao Y F, Zhu Q H, Zhao M L, Jiang X, Zhao J J 2018 J. Phys. Condens. Matter 30 25LT02Google Scholar

    [32]

    Deng Z X, Wang X H 2019 RSC Adv. 9 26024Google Scholar

    [33]

    Ben Aziza Z, Pierucci D, Henck H, Silly M G, David C, Yoon M, Sirotti F, Xiao K, Eddrief M, Girard J C, Ouerghi A 2017 Phys. Rev. B 96 035407Google Scholar

    [34]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

  • 图 1  AA和AB堆叠kag-TMPc异质结 (a)俯视图和(b)侧视图; (c) kag-MnPc, (d) kag-FePc, (e) kag-CoPc, (f) kag-CuPc的能带结构

    Fig. 1.  Atomic structure of (a) AA stacking and (b) AB stacking heterostructures in kag-TMPc unit cell from a top view (upper panel) and side view (lower panel), respectively; band structures of monolayer (c) kag-MnPc, (d) kag-FePc, (e) kag-CoPc, (f) kag-CuPc.

    图 2  从AA移动到AB堆叠过程中, kag-MnPc/McPc异质结结构框架的示意图与能带图

    Fig. 2.  Schematic models and band structures of kag-MnPc/McPc heterostructure from AA to AB stacking pattern.

    图 3  在(a) 0.00, (b) 0.33, (c) 0.50, (d) 0.67, (e) 1.00比例下, kag-MnPc/McPc异质结原子投影能带图; (f)带隙随比例的变化图

    Fig. 3.  Atom-projected band structures of kag-MnPc/McPc heterostructure in (a) 0.00, (b) 0.33, (c) 0.50, (d) 0.67, (e) 1.00 movement ratios; (f) bandgap as a function of movement ratio.

    图 4  kag-CoPc/CoPc异质结铁磁态和反铁磁态的磁构型

    Fig. 4.  Illustration of three possible spin orders: FM state, AFM1 state, and AFM2 state of kag-CoPc/CoPc.

    图 5  AA和AB堆叠的kag-MnPc/MnPc, kag-MnPc/CuPc, kag-MnPc/ZnPc异质结能带带隙对比

    Fig. 5.  Comparison of bandgaps of kag-MnPc/MnPc, kag-MnPc/CuPc, and kag-MnPc/ZnPc heterostructures in AA and AB stacking.

    图 6  (a) AA, (b) AB堆叠的kag-MnPc/kag-MnPc同质结能带; 其中绿色代表自旋向上, 蓝色代表自旋向下, 1-kag-MnPc为同质结的第一层, 2-kag-MnPc为同质结的第二层

    Fig. 6.  Band structures of kag-MnPc/kag-MnPc homostructure in (a) AA and (b) AB stacking. Green and blue lines represent spin up and spin down electronic structures, respectively.

    图 8  AB堆叠的kag-MnPc/kag-ZnPc异质结的能带图, 绿色代表自旋向上, 蓝色代表自旋向下

    Fig. 8.  Band structures of kag-MnPc/kag-ZnPc heterostructure in AB stacking. Green and blue lines represent spin up and spin down electronic structures, respectively.

    图 7  (a) AA, (b) AB堆叠的kag-MnPc/kag-CuPc异质结的能带图; 其中绿色代表自旋向上, 蓝色代表自旋向下, kag-MnPc为Mn原子所在的单层, kag-CuPc为Cu原子所在的单层

    Fig. 7.  Band structures of kag-MnPc/kag-CuPc heterostructure in (a) AA and (b) AB stacking. Green and blue lines represent spin up and spin down bands, respectively.

    图 9  不同层间距下AB堆叠kag-CoPc/CuPc异质结的能带图 (a) 3.254 Å; (b) 3.354 Å; (c) 3.454 Å; (d) 3.554 Å; (e) 3.654 Å

    Fig. 9.  Spin-polarized band structures of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance: (a) 3.254 Å; (b) 3.354 Å; (c) 3.454 Å; (d) 3.554 Å; (e) 3.654 Å.

    图 10  不同层间距下AB堆叠kag-CoPc/CuPc异质结的(a)—(d)能级位置变化和(e)能带排列

    Fig. 10.  (a)–(d) Energy level and (e) band alignment of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance.

    图 11  不同层间距下AB堆叠kag-CoPc/CuPc异质结的单层投影能带图 (a) 3.267 Å; (b) 3.367 Å; (c) 3.467 Å; (d) 3.567 Å; (e) 3.667 Å

    Fig. 11.  Layer-projected band structures of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance: (a) 3.267 Å; (b) 3.367 Å; (c) 3.467 Å; (d) 3.567 Å; (e) 3.667 Å.

    表 1  kag-TMPc (TM = Cr, Mn, Co, Cu, Zn)的晶格常数、带隙和磁矩(MTM)

    Table 1.  Lattice parameters, bandgaps and magnetic moments on TM atom (MTM) of kag-TMPc (TM = Cr, Mn, Co, Cu and Zn).

    Monolayer Lattice parameter/Å Bandgap/eV MTMB
    Reference[8] This work Up Down Total
    kag-CrPc 18.91 18.72 1.26 1.10 0.82 4
    kag-MnPc 18.80 18.65 1.21 0.15 0.15 3.52
    kag-CoPc 18.71 18.59 1.27 1.27 1.27 0.98
    kag-CuPc 18.85 18.71 1.31 1.25 1.25 0.59
    kag-ZnPc 19.03 18.82 1.238 0
    下载: 导出CSV

    表 2  四类kag-TMPc异质结的晶格失配度、平衡层间距、不能堆叠方式下的能量差(ΔEheter)、层间结合能(EB)和自旋极化的能带带隙

    Table 2.  Lattice mismatch, equilibrium distance, energy difference between two stacking modes, interlayer binding energy, and spin-polarized bandgap of kag-TMPc heterostructures.

    Heterojunction Lattice
    mismatch
    Stacking
    pattern
    Equilibrium
    distance/Å
    ΔEheter/eV $ {E}_{{\mathrm{B}}} $/meV Bandgap/eV
    Up Down Total
    kag-MnPc/MnPc 0.00% AA 3.705 0.172 –16 0.96 0.00 0.00
    AB 3.452 –17 1.08 0.07 0.07
    kag-MnPc/CuPc 0.32% AA 3.591 0.005 –18 0.94 0.10 0.10
    AB 3.453 –18 1.10 0.16 0.16
    kag-MnPc/ZnPc 0.88% AA 3.672 0.032 –17 0.94 0.16 0.16
    AB 3.448 –17 1.08 0.17 0.17
    kag-CoPc/CuPc 0.64% AA 3.617 0.189 –15 0.00 0.00 0.00
    AB 3.454 –16 1.08 1.08 1.08
    下载: 导出CSV

    表 3  kag-TMPc异质结的磁交换能 (ΔE)和磁矩(M)

    Table 3.  Exchange energies per formula (ΔE) and magnetic moments (M) for kag-TMPc heterostructures.

    Heterojunction Stacking pattern ΔE/meV Magnetic property Magnetic moment
    MAB MBB
    kag-MnPc/MnPc AB 7.1 FM 3.543/3.527/3.527 3.543/3.527/3.527
    kag-MnPc/ZnPc AA 42.65 FM 3.568 0
    AB 43.69 FM 3.557 0
    kag-CoPc/CuPc AB 240 FiM 1.05/–1.05/–1.05 0.59/–0.59/–0.59
    下载: 导出CSV

    表 4  在不同层间距下AB堆叠kag-CoPc/CuPc异质结电子结构信息

    Table 4.  Electronic structure parameters of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance.

    Interlayer distance/Å Bandgap/eV Band alignment
    Spin up Spin down Total Spin up Spin down
    3.254 0.990 0.990 0.990 II
    3.354 0.610 0.490 0.050 I I
    3.454 1.080 1.080 1.080 II II
    3.554 1.130 1.070 1.060 II II
    3.654 0.970 1.150 0.970 I II
    下载: 导出CSV
  • [1]

    Lu S, Liu L B, Demissie H, An G Y, Wang D S 2021 Environ. Int. 146 106273Google Scholar

    [2]

    Wei X Q, Shao D, Xue C L, Qu X Y, Chai J, Li J Q, Du Y E, Chen Y Q 2020 CrystEngComm 22 5275Google Scholar

    [3]

    Thorarinsdottir A E, Harris T D 2020 Chem. Rev. 120 8716Google Scholar

    [4]

    Van Heumen E 2021 Nat. Mater. 20 1308Google Scholar

    [5]

    Yang Y X, Fan W H, Zhang Q H, Chen Z X, Chen X, Ying T P, Wu X X, Yang X F, Meng F Q, Li G, Li S Y, Gu L, Qian T, Schnyder A P, Guo J G, Chen X L 2021 Chin. Phys. Lett. 38 127102Google Scholar

    [6]

    Zeng K Y, Song F Y, Ling L S, Tong W, Li S L, Tian Z M, Ma L, Pi L 2022 Chin. Phys. Lett. 39 107501Google Scholar

    [7]

    Yang Y Y, Chen K W, Ding Z F, Hillier A D, Shu L 2022 Chin. Phys. Lett. 39 107502Google Scholar

    [8]

    Chen H Q, Shan H, Zhao A D, Li B 2019 Chin. J. Chem. Phys. 32 563Google Scholar

    [9]

    Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H 2013 J. Am. Chem. Soc. 135 2462Google Scholar

    [10]

    Wang Z F, Su N H, Liu F 2013 Nano Lett. 13 2842Google Scholar

    [11]

    Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L 2011 J. Am. Chem. Soc. 133 1203Google Scholar

    [12]

    Zhou J, Sun Q 2011 J. Am. Chem. Soc. 133 15113Google Scholar

    [13]

    Xu Y N, Gu Z Q, Ching W Y 2000 J. Appl. Phys. 87 4867Google Scholar

    [14]

    Lü K, Zhou J, Zhou L, Wang Q, Sun Q, Jena P 2011 Appl. Phys. Lett. 99 163104Google Scholar

    [15]

    Xie L S, Jin G X, He L, Bauer G E W, Barker J, Xia K 2017 Phys. Rev. B 95 014423Google Scholar

    [16]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [17]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [18]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotech. 5 722Google Scholar

    [19]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B, Chen H 2013 J. Mater. Chem. C 1 1618Google Scholar

    [20]

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [21]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [26]

    Panchmatia P M, Sanyal B, Oppeneer P M 2008 Chemical Physics 343 47Google Scholar

    [27]

    Bernien M, Miguel J, Weis C, Ali Md E, Kurde J, Krumme B, Panchmatia P M, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer P M, Eriksson O, Kuch W, Wende H 2009 Phys. Rev. Lett. 102 047202Google Scholar

    [28]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [29]

    Ningrum V P, Liu B, Wang W, Yin Y, Cao Y, Zha C, Xie H, Jiang X, Sun Y, Qin S, Chen X, Qin T, Zhu C, Wang L, Huang W 2020 Research 2020 1768918Google Scholar

    [30]

    Jiang X, Jiang Z, Zhao J J 2017 Appl. Phys. Lett. 111 253904Google Scholar

    [31]

    Yu J T, Jiang Z, Hao Y F, Zhu Q H, Zhao M L, Jiang X, Zhao J J 2018 J. Phys. Condens. Matter 30 25LT02Google Scholar

    [32]

    Deng Z X, Wang X H 2019 RSC Adv. 9 26024Google Scholar

    [33]

    Ben Aziza Z, Pierucci D, Henck H, Silly M G, David C, Yoon M, Sirotti F, Xiao K, Eddrief M, Girard J C, Ouerghi A 2017 Phys. Rev. B 96 035407Google Scholar

    [34]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [4] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [5] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [6] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [7] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [8] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [9] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [10] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [11] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [12] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [13] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [14] 陈敏, 万婷, 王征, 罗朝明, 刘靖. 宽绝对禁带的一维磁性光子晶体结构. 物理学报, 2017, 66(1): 014204. doi: 10.7498/aps.66.014204
    [15] 张新伟, 华正和, 蒋毓文, 杨绍光. 溶胶凝胶自燃烧法合成金属与合金材料研究进展. 物理学报, 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [16] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [17] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [19] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [20] 刘 鲁, 范广涵, 廖常俊, 曹明德, 陈贵楚, 陈练辉. AlGaInP四元系材料渐变异质结及其在高亮度发光二级管器件中的应用. 物理学报, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
计量
  • 文章访问数:  2497
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-09-03
  • 上网日期:  2023-09-20
  • 刊出日期:  2023-12-20

/

返回文章
返回