搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响

范文信 王敏杰 焦浩乐 路迦进 刘海龙 杨智芳 席梦琦 李淑静 王海

引用本文:
Citation:

读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响

范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海

Dependence of retrieval efficiency on waist ratio of read beam to anti-Stokes photon mode in cavity-enhanced quantum memory

Fan Wen-Xin, Wang Min-Jie, Jiao Hao-Le, Lu Jia-Jin, Liu Hai-Long, Yang Zhi-Fang, Xi Meng-Qi, Li Shu-Jing, Wang Hai
PDF
HTML
导出引用
  • Duan-Lukin-Cirac-Zoller(DLCZ)量子中继协议中, 量子存储器的恢复效率直接影响纠缠分发速率. 研究了读光与读出光子模式腰斑比对DLCZ型量子存储器恢复效率的影响. 本文将87Rb冷原子系综置于中等精细度的环形腔内, 开展了腔增强DLCZ量子存储的实验研究. 通过改变读光腰斑大小来调节读光与读出光子模式腰斑比, 研究了其对腔增强量子存储器恢复效率的影响. 结果表明, 读光与读出光子模式腰斑比为3时, 实现了$ 68.9{\text{%}} \pm 1.6{\text{%}} $的本质恢复效率, 这时写出光子与读出光子的互关联函数$ {g^{(2)}} $$ 26.5 \pm 1.9 $. 理论上建立了本质恢复效率随腰斑比的变化关系模型, 理论计算与实验相吻合, 演示了高恢复效率的量子存储器.
    Quantum communication is promising for absolutely safe information transmission. However, the direct transmission distance of quantum states is limited by the no-cloning theorem and transmission loss. To solve these problems, Duan et al. proposed a promising quantum repeater scheme, DLCZ protocol (Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413), in which linear optics and atomic ensembles are used to combine entanglement generation and quantum memory into a single node. A quantum memory with highly retrieval efficiency is beneficial to increasing the rate of entanglement swapping, and also achieving high-speed entanglement distribution. Up to now, high-efficiency quantum memories have been realized by using high-optical-depth atomic ensembles or by coupling atomic ensembles with a medium-finesse optical cavity. However, the effect of the waist ratio of read beam mode and anti-Stokes photon mode on intrinsic retrieval efficiency has not been studied in detail. Here, we study the dependence of intrinsic retrieval efficiency on the waist ratio of read beam mode to anti-Stokes photon mode in cavity-enhanced quantum memory.In this work, an 87Rb atomic ensemble, that is placed at the center of a passively stabilized polarization interferometer (BD1,2), is used as quantum memory. Firstly, the ensemble is captured through magneto-optical trapping (MOT) and prepared into the Zeeman sub-level of ground state $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle $. Then, a weak write pulse with frequency red-detuned from the $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle \to \left| {5{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F' = 1,m = 1} \right\rangle $ transition by 110 MHz, illuminates the atoms and induces spontaneous Raman scattering out a Stokes photon. In this regime of weak excitation, the detection of a Stokes photon heralds the storage of a single spin wave $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle \leftrightarrow \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 2,m = 0} \right\rangle $ ($ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle \leftrightarrow \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 2,m = 2} \right\rangle $) distributed among the whole ensemble. After a programmable delay, a read pulse that generates a 110 MHz red-detuning from the $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 2,m = 0} \right\rangle \to \left| {5{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F' = 2,m = - 1} \right\rangle $ transition converts this spin wave into an anti-Stokes photon. We detect the Stokes photons and anti-Stokes photons with polarization $ {\sigma ^ + } $, which means that all the spin-waves are stored in a magnetic-field-insensitive state to reduce the decoherence caused by the stray magnetic fields. In order to increase the intrinsic retrieval efficiency, the atomic ensemble is placed in a ring cavity. The cavity length is 4 m, the finesse is measured to be ~15, and the escape efficiency of ring cavity is 52.9%. Both Stokes and anti-Stokes photon qubits are required to resonate with the ring cavity. To meet this requirement, a cavity-locking beam is injected into the cavity to stabilize the cavity length by using a Pound-Drever-Hall locking scheme. Finally, we fix the Stokes (anti-Stokes) photon mode waist and change the waist ratio through changing the write beam (read beam) waist.The experimental results show that when the waist ratio of read beam mode to anti-Stokes photon mode is 3, the intrinsic retrieval efficiency reaches to $ 68.9 {\text{%}} \pm 1.6{\text{%}} $ and normalized cross-correlation function $ {g^{(2)}} $ can achieve $ 26.5 \pm 1.9 $. We build a theoretical model, which shows that the intrinsic retrieval efficiency reaches the peak when the waist ratio is 3, and the intrinsic retrieval efficiency tends to be stable when the waist ratio continues to increase. The experimental results accord with the theoretical results. In the future, we will improve the intrinsic retrieval efficiency by enhancing the fineness of the optical cavity with optimal cavity parameters.
      通信作者: 李淑静, lishujing@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174235)、山西省“1331 工程”重点学科建设计划(批准号: 1331KSC)和山西省基础研究计划(批准号: 202203021221011)资助的课题.
      Corresponding author: Li Shu-Jing, lishujing@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174235), the Fund for “1331 Project” Key Subjects Construction of Shanxi Province, China (Grant No. 1331KSC), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021221011).
    [1]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502Google Scholar

    [2]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [3]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [4]

    Pan J W, Simon C, Brukner Č, Zeilinger A 2001 Nature 410 1067Google Scholar

    [5]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [6]

    Pan J W, Gasparoni S, Ursin R, Weihs G, Zeilinger A 2003 Nature 423 417Google Scholar

    [7]

    Reichle R, Leibfried D, Knill E, et al. 2006 Nature 443 838Google Scholar

    [8]

    Matsukevich D N, Chanelière T, Bhattacharya M, et al. 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [9]

    Dudin Y O, Jenkins S D, Zhao R, et al. 2009 Phys. Rev. Lett. 103 020505Google Scholar

    [10]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [11]

    Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601Google Scholar

    [12]

    Matsukevich D N, Chanelière T, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2006 Phys. Rev. Lett. 96 030405Google Scholar

    [13]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Perseguers S, Lapeyre G J, Cavalcanti D, Lewenstein M, Acín A 2013 Rep. Prog. Phys. 76 096001Google Scholar

    [15]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [16]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [17]

    Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar

    [18]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [19]

    Laurat J, de Riedmatten H, Felinto D, Chou C W, Schomburg E W, Kimble H J 2006 Opt. Express 14 6912Google Scholar

    [20]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [21]

    Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar

    [22]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [23]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photonics 10 381Google Scholar

    [24]

    Wang X J, Yang S J, Sun P F, Jing B, Li J, Zhou M T, Bao X H, Pan J W 2021 Phys. Rev. Lett. 126 090501Google Scholar

    [25]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [26]

    Farrera P, Heinze G, Albrecht B, Ho M, Chávez M, Teo C, Sangouard N, de Riedmatten H 2016 Nat. Commun. 7 13556Google Scholar

    [27]

    Gorshkov A V, André A, Lukin M D, Sørensen A S 2007 Phys. Rev. A 76 033805Google Scholar

    [28]

    Nunn J, Walmsley A, Raymer M G, Surmacz K, Waldermann F C, Wang Z, Jaksch D 2007 Phys. Rev. A 75 011401Google Scholar

    [29]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [30]

    Surmacz K, Nunn J, Reim K, Lee K. C, Lorenz V. O, Sussman B, Walmsley I. A, Jaksch D 2008 Phys. Rev. A 78 033806Google Scholar

    [31]

    Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar

    [32]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [33]

    Wang M J, Wang S Z, Ma T F, Li Y, Xie Y, Jiao H L, Liu H L, Li S J, Wang H 2023 Quantum 7 903Google Scholar

    [34]

    Wang S Z, Wang M J, Wen Y F, Xv Z X, Ma T F, Li S J, Wang H 2021 Commun. Phys. 4 168Google Scholar

    [35]

    Black D E 2001 Am. J. Phys. 69 79Google Scholar

    [36]

    Li C, Wang H Y, Artemiy D, Riccard M O, Miao H X, Han S 2021 Results Phys. 30 104835Google Scholar

    [37]

    Su J, Jiao M X, Jiang F 2018 Optik 168 348Google Scholar

    [38]

    Stoyanov L, Stefanov A, Dreischuh A, Paulus G G 2023 Opt. express 31 13683Google Scholar

    [39]

    Hiekkamäki M, Barros R F, Ornigotti M, Fickler R 2022 Nat. Photonics 16 828Google Scholar

    [40]

    Iulia G 2023 Nat. Rev. Phys. 5 372Google Scholar

    [41]

    Erpenbeck A, Gull E, Cohen G 2023 Phys. Rev. Lett. 130 186301Google Scholar

    [42]

    Dum R, Zoller P, Ritsch H 1992 Phys. Rev. A 45 4879Google Scholar

  • 图 1  实验能级图 (a)写过程; (b)读过程

    Fig. 1.  Relevant 87Rb atomic levels: (a) Writing process; (b) reading process.

    图 2  实验装置图, 其中BD为光移束器, PZT为压电陶瓷, OSFS为光谱滤波器组, SMF为单模光纤, PD为光电探测器, SPD为单光子探测器, OC为输出耦合镜

    Fig. 2.  Experimental setup. BD, the beam displacer; PZT, the piezoelectric transducer; OSFS, optical-spectrum-filter set; SMF, single-mode fiber; PD, photodiode; SPD, singlephoton detector; OC, output coupler.

    图 3  实验时序图. 自上而下依次为磁光阱、锁腔过程、态制备过程、写过程、读过程

    Fig. 3.  Time sequence of experiment. From top to bottom, they are magneto-optical trap, the locking cavity process, the state cleaning process, the writing process, the reading procress.

    图 4  读光饱和功率密度下, 本质恢复效率随腰斑比的变化. 橙色菱形为理论值, 蓝色方块为实验数据

    Fig. 4.  Intrinsic retrieval efficiency as a function of the waist width ratio under the saturation power density of read. The orange diamond represents the theoretical value and the blue square represents the experimental data.

    图 5  腰斑比$ \alpha = 3 $时, 本质恢复效率(蓝色方块)与互关联函数$ {g^{(2)}} $(红色圆点)随读激光功率的变化

    Fig. 5.  Intrinsic retrieval efficiency (the blue square) and the cross-correlation function $ {g^{(2)}} $ (the red dot) as a function of read power at the waist width ratio $ \alpha = 3 $.

  • [1]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502Google Scholar

    [2]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [3]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [4]

    Pan J W, Simon C, Brukner Č, Zeilinger A 2001 Nature 410 1067Google Scholar

    [5]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [6]

    Pan J W, Gasparoni S, Ursin R, Weihs G, Zeilinger A 2003 Nature 423 417Google Scholar

    [7]

    Reichle R, Leibfried D, Knill E, et al. 2006 Nature 443 838Google Scholar

    [8]

    Matsukevich D N, Chanelière T, Bhattacharya M, et al. 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [9]

    Dudin Y O, Jenkins S D, Zhao R, et al. 2009 Phys. Rev. Lett. 103 020505Google Scholar

    [10]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [11]

    Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601Google Scholar

    [12]

    Matsukevich D N, Chanelière T, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2006 Phys. Rev. Lett. 96 030405Google Scholar

    [13]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Perseguers S, Lapeyre G J, Cavalcanti D, Lewenstein M, Acín A 2013 Rep. Prog. Phys. 76 096001Google Scholar

    [15]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [16]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [17]

    Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar

    [18]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [19]

    Laurat J, de Riedmatten H, Felinto D, Chou C W, Schomburg E W, Kimble H J 2006 Opt. Express 14 6912Google Scholar

    [20]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [21]

    Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar

    [22]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [23]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photonics 10 381Google Scholar

    [24]

    Wang X J, Yang S J, Sun P F, Jing B, Li J, Zhou M T, Bao X H, Pan J W 2021 Phys. Rev. Lett. 126 090501Google Scholar

    [25]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [26]

    Farrera P, Heinze G, Albrecht B, Ho M, Chávez M, Teo C, Sangouard N, de Riedmatten H 2016 Nat. Commun. 7 13556Google Scholar

    [27]

    Gorshkov A V, André A, Lukin M D, Sørensen A S 2007 Phys. Rev. A 76 033805Google Scholar

    [28]

    Nunn J, Walmsley A, Raymer M G, Surmacz K, Waldermann F C, Wang Z, Jaksch D 2007 Phys. Rev. A 75 011401Google Scholar

    [29]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [30]

    Surmacz K, Nunn J, Reim K, Lee K. C, Lorenz V. O, Sussman B, Walmsley I. A, Jaksch D 2008 Phys. Rev. A 78 033806Google Scholar

    [31]

    Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar

    [32]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [33]

    Wang M J, Wang S Z, Ma T F, Li Y, Xie Y, Jiao H L, Liu H L, Li S J, Wang H 2023 Quantum 7 903Google Scholar

    [34]

    Wang S Z, Wang M J, Wen Y F, Xv Z X, Ma T F, Li S J, Wang H 2021 Commun. Phys. 4 168Google Scholar

    [35]

    Black D E 2001 Am. J. Phys. 69 79Google Scholar

    [36]

    Li C, Wang H Y, Artemiy D, Riccard M O, Miao H X, Han S 2021 Results Phys. 30 104835Google Scholar

    [37]

    Su J, Jiao M X, Jiang F 2018 Optik 168 348Google Scholar

    [38]

    Stoyanov L, Stefanov A, Dreischuh A, Paulus G G 2023 Opt. express 31 13683Google Scholar

    [39]

    Hiekkamäki M, Barros R F, Ornigotti M, Fickler R 2022 Nat. Photonics 16 828Google Scholar

    [40]

    Iulia G 2023 Nat. Rev. Phys. 5 372Google Scholar

    [41]

    Erpenbeck A, Gull E, Cohen G 2023 Phys. Rev. Lett. 130 186301Google Scholar

    [42]

    Dum R, Zoller P, Ritsch H 1992 Phys. Rev. A 45 4879Google Scholar

  • [1] 王帅, 李希, 姚星灿. 基于增强条纹去除的超冷原子成像. 物理学报, 2024, 73(14): 146701. doi: 10.7498/aps.73.20240570
    [2] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备. 物理学报, 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [3] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [4] 温亚飞, 田剑锋, 王志强, 庄园园. 冷原子系综中光纤腔增强且高保真度的光学存储. 物理学报, 2023, 72(6): 060301. doi: 10.7498/aps.72.20222178
    [5] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [6] 马腾飞, 王敏杰, 王圣智, 焦浩乐, 谢燕, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究. 物理学报, 2022, 71(2): 020301. doi: 10.7498/aps.71.20210881
    [7] 袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海. 原子系综中光学腔增强的Duan-Lukin-Cirac-Zoller写过程激发实验. 物理学报, 2021, 70(7): 070302. doi: 10.7498/aps.70.20201394
    [8] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210881
    [9] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量. 物理学报, 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [10] 王圣智, 温亚飞, 张常睿, 王登新, 徐忠孝, 李淑静, 王海. 读出效率对光与原子纠缠产生的影响. 物理学报, 2019, 68(2): 020301. doi: 10.7498/aps.68.20181314
    [11] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [12] 温亚飞, 王圣智, 徐忠孝, 李淑静, 王海. 冷原子系综中两正交光场偏振模高效率存储的实验研究. 物理学报, 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [13] 赵岫鸟, 孙建安, 豆福全. 外场形式对超冷原子-多聚物分子转化效率的影响. 物理学报, 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [14] 丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航. 静态随机存储器总剂量辐射损伤的在线与离线测试方法. 物理学报, 2014, 63(8): 086101. doi: 10.7498/aps.63.086101
    [15] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [16] 郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超. 总剂量辐射环境中的静态随机存储器功能失效模式研究. 物理学报, 2013, 62(11): 116101. doi: 10.7498/aps.62.116101
    [17] 乔建良, 常本康, 钱芸生, 杜晓晴, 王晓晖, 郭向阳. 反射式NEA GaN光电阴极量子效率恢复研究. 物理学报, 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [18] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [19] 黄善国, 顾畹仪, 马海强. 失谐对冷原子介质中光脉冲信息存储的影响. 物理学报, 2004, 53(12): 4211-4217. doi: 10.7498/aps.53.4211
    [20] 梁文青, 储开芹, 张智明, 谢绳武. 超冷V型三能级原子注入的微波激射:原子相干性对腔场光子统计的影响. 物理学报, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
计量
  • 文章访问数:  2145
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-08-07
  • 上网日期:  2023-08-24
  • 刊出日期:  2023-11-05

/

返回文章
返回