搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能

刘玮 冯秋菊 宜子琪 俞琛 王硕 王彦明 隋雪 梁红伟

引用本文:
Citation:

Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能

刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟

Preparation and ultraviolet detection performance of Cu doped β-Ga2O3 thin films

Liu Wei, Feng Qiu-Ju, Yi Zi-Qi, Yu Chen, Wang Shuo, Wang Yan-Ming, Sui Xue, Liang Hong-Wei
PDF
HTML
导出引用
  • β-Ga2O3作为第三代宽禁带半导体材料, 具有禁带宽度大(4.9 eV)、击穿电场强, 吸收边正好位于日盲紫外波段(波长200—280 nm)内, 且在近紫外以及整个可见光波段具有较高的透过率, 使得β-Ga2O3是一种非常适合制作日盲紫外光电探测器的材料. 目前在p型β-Ga2O3材料方面的研究还较少, 但p型β-Ga2O3材料的制备对于其光电器件的应用至关重要, 因此成功制备p型β-Ga2O3材料就显得尤为关键. 采用化学气相沉积法在蓝宝石衬底上生长出不同Cu掺杂量的β-Ga2O3薄膜, 并对薄膜的形貌、晶体结构和光电特性进行了测试. 发现随着Cu掺杂量的增加, 样品($ \bar 201 $)晶面的衍射峰向小角度方向发生了移动, 这说明Cu2+替代了Ga3+进入到了Ga2O3晶格中. 此外, 在Cu掺杂β-Ga2O3薄膜上蒸镀Au作为叉指电极, 制备出了金属-半导体-金属结构光电导型日盲紫外探测器, 并对其紫外探测性能进行了研究. 结果表明, 在10 V偏压、254 nm波长紫外光下, 器件的光暗电流比约为3.81×102, 器件的上升时间和下降时间分别是0.11 s和0.13 s. 此外, 在光功率密度为64 μW/cm2时, 器件的响应度和外部量子效率分别是1.72 A/W和841%.
    Solar-blind UV photodetectors (SBPs) have attracted great attention because they are widely used in missile tracking, fire detection, biochemical analysis, astronomical observations, space-to-space communications, etc. At present, it is found that wide bandgap semiconductor materials such as AlxGa1-xN, Mg1Zn1-xO, diamond and β-Ga2O3 are ideal semiconductor materials for developing high-performance SBPs. The ultra-wide band gap semiconductor material, β-Ga2O3, has a large band gap width of 4.9 eV, strong breakdown electric field, absorption edge located in the solar blind ultraviolet band (200–280 nm), and it also has high transmittance in the near ultraviolet and the whole visible band. Therefore, β-Ga2O3 is a very suitable material for making solar blind UV photodetectors. However, the p-type β-Ga2O3 is difficult to dope, which limits the further development of β-Ga2O3 devices. In this work, the β-Ga2O3 thin films with different Cu doping content are grown on sapphire substrates by chemical vapor deposition method, and the morphology, crystal structure and optical properties of β-Ga2O3 films are measured. The test results show that the surfaces of β-Ga2O3 films with different Cu content are relatively smooth, and the ($ \bar 201 $) diffraction peak positions shift toward the lower degree side with the increase of Cu content, which indicates that Cu2+ replaces Ga3+ and enters into the β-Ga2O3 lattice. The optical absorption spectrum measurement indicates that the energy gaps of samples are evidently narrowed with the increase of Cu doping concentration. Hall measurements indicate that the Cu doped β-Ga2O3 thin films have a p-type conductivity with a hole concentration of 7.36 × 1014, 4.83 × 1015 and 1.69 × 1016 cm–3, respectively. In addition, a photoconductive UV detector with metal-semiconductor-metal structure is prepared by evaporating Au on a Cu-doped β-Ga2O3 thin film, and its UV detection performance is studied. The results show that the photocurrent value of the device increases with Cu content increasing. The photo-to-dark current ratio (Il/Id) is about 3.8×102 of 2.4% Cu content device under 254 nm-wavelength light at 10 V. The rise time and decay time are 0.11 s and 0.13 s, respectively. Furthermore, the responsivity and external quantum efficiency can reach 1.72 A/W and 841% under 254 nm-wavelength light with a light intensity of 64 μW/cm2.
      通信作者: 冯秋菊, qjfeng@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075045)、辽宁省自然科学基金(批准号: 2020-MS-243)、大连市科技创新基金项目(批准号: 2022JJ12GX023)和辽宁师范大学2022年高端科研成果培育资助计划(批准号: 22GDL002)资助的课题.
      Corresponding author: Feng Qiu-Ju, qjfeng@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075045), the Natural Science Foundation of Liaoning Province, China (Grant No. 2020-MS-243), Dalian Technological Innovation Fund Project, China (Grant No. 2022JJ12GX023), and the Liaoning Normal University 2022 Outstanding Research Achievements Cultivation Fund, China (Grant No. 22GDL002).
    [1]

    谢自力, 张荣, 修向前, 韩平, 刘斌, 陈琳, 俞慧强, 江若琏, 施毅, 郑有炓 2007 物理学报 56 6717Google Scholar

    Xie Z L, Zhang R, Xiu X Q, Han P, Liu B, Chen L, Yu H Q, Jiang R L, Shi Y, Zheng Y D 2007 Acta Phys. Sin. 56 6717Google Scholar

    [2]

    Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109

    [3]

    Alaie Z, Nejad S M, Yousefi M H 2014 J. Mater. Sci. Mater. Electron. 25 852Google Scholar

    [4]

    Ouyang W, Teng F, Jiang M M, Fang X S 2017 Small 13 1702177Google Scholar

    [5]

    Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar

    [6]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [7]

    Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [8]

    Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar

    [9]

    Jin C, Park S, Kim H, Lee C 2012 Sens. Actuators B 161 223Google Scholar

    [10]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [11]

    Wang D, Ge K, Meng D, Chen Z 2023 Mater. Lett. 330 133251Google Scholar

    [12]

    Zhang C, Li Z, Wang W 2021 Materials 14 5161Google Scholar

    [13]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [14]

    Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar

    [15]

    Xu C, Shen L, Liu H, Pan X, Ye Z 2021 J. Electron. Mater. 50 2043Google Scholar

    [16]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [17]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloy. Comp. 660 136Google Scholar

    [18]

    Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [19]

    Dong L P, Pang T Q, Yu J G, Wang Y C, Zhu W G, Zheng H D, Yu J H, Jia R X, Zhe C 2019 J. Mater. Chem. C 7 14205Google Scholar

    [20]

    Chu S Y, Yeh T H, Lee C T, Lee H Y 2022 Mater. Sci. Semicond. Process. 142 106471Google Scholar

    [21]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 物理学报 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

  • 图 1  Cu掺杂β-Ga2O3薄膜日盲紫外探测器结构示意图

    Fig. 1.  Structural diagram of solar-blind ultraviolet detector based on Cu-doped β-Ga2O3 thin film.

    图 2  样品的SEM图 (a)样品A; (b)样品B; (c)样品C

    Fig. 2.  SEM images of samples: (a) Sample A; (b) sample B; (c) sample C.

    图 3  样品的EDS能谱图 (a)样品A; (b)样品B; (c)样品C

    Fig. 3.  EDS spectra of samples: (a) Sample A; (b) sample B; (c) sample C.

    图 4  (a)样品A, B, C的XRD图谱; (b)样品A, B, C放大的($\bar 201 $)衍射峰的XRD图谱

    Fig. 4.  (a) XRD patterns of samples A, B, C; (b) XRD patterns of amplified ($\bar 201 $) diffraction peak of samples A, B, C.

    图 5  样品A, B, C的光学吸收图

    Fig. 5.  Absorption spectra of samples A, B, C.

    图 6  在黑暗和波长254 nm光照时, 器件的I-V曲线 (a)器件A; (b)器件B; (c)器件C

    Fig. 6.  I-V curves of devices at dark and wave length of 254 nm illumination: (a) Device A; (b) device B; (c) device C.

    图 7  (a) 10 V偏压下, 器件C对波长254 nm紫外光在不同光功率密度下的响应I-t曲线; (b)器件C单个周期的响应-恢复时间曲线

    Fig. 7.  (a) I-t curves of responses of device C under wave length of 254 nm UV light at different light intensities at 10 V bias; (b) response-recovery time curves of a cycle for device C.

    图 8  器件C的响应度和EQE随光功率密度的变化

    Fig. 8.  Responsivity and EQE of device C with optical power intensity.

    表 1  不同Cu掺杂量β-Ga2O3的实验参数

    Table 1.  Experimental parameters of β-Ga2O3 with different Cu contents.

    样品Ga2O3/CuO
    质量比
    生长温度
    /℃
    反应时间
    /min
    Ar流量
    /(mL⋅min–1)
    O2流量
    /(mL⋅min–1)
    A25∶110003020050
    B25∶210003020050
    C25∶310003020050
    下载: 导出CSV

    表 2  样品A, B, C的电学性质

    Table 2.  Electrical properties of sample A, B, C.

    样品 导电类型 载流子浓度/cm–3 霍尔迁移率/
    (cm2⋅(V⋅s)–1)
    A p 7.36×1014 11.64
    B p 4.83×1015 7.38
    C p 1.69×1016 4.52
    下载: 导出CSV
  • [1]

    谢自力, 张荣, 修向前, 韩平, 刘斌, 陈琳, 俞慧强, 江若琏, 施毅, 郑有炓 2007 物理学报 56 6717Google Scholar

    Xie Z L, Zhang R, Xiu X Q, Han P, Liu B, Chen L, Yu H Q, Jiang R L, Shi Y, Zheng Y D 2007 Acta Phys. Sin. 56 6717Google Scholar

    [2]

    Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109

    [3]

    Alaie Z, Nejad S M, Yousefi M H 2014 J. Mater. Sci. Mater. Electron. 25 852Google Scholar

    [4]

    Ouyang W, Teng F, Jiang M M, Fang X S 2017 Small 13 1702177Google Scholar

    [5]

    Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar

    [6]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [7]

    Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [8]

    Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar

    [9]

    Jin C, Park S, Kim H, Lee C 2012 Sens. Actuators B 161 223Google Scholar

    [10]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [11]

    Wang D, Ge K, Meng D, Chen Z 2023 Mater. Lett. 330 133251Google Scholar

    [12]

    Zhang C, Li Z, Wang W 2021 Materials 14 5161Google Scholar

    [13]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [14]

    Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar

    [15]

    Xu C, Shen L, Liu H, Pan X, Ye Z 2021 J. Electron. Mater. 50 2043Google Scholar

    [16]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [17]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloy. Comp. 660 136Google Scholar

    [18]

    Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [19]

    Dong L P, Pang T Q, Yu J G, Wang Y C, Zhu W G, Zheng H D, Yu J H, Jia R X, Zhe C 2019 J. Mater. Chem. C 7 14205Google Scholar

    [20]

    Chu S Y, Yeh T H, Lee C T, Lee H Y 2022 Mater. Sci. Semicond. Process. 142 106471Google Scholar

    [21]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 物理学报 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240267
    [2] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [3] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [4] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器. 物理学报, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [5] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [6] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊. N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响. 物理学报, 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [7] 王文旭, 任衍彪, 张世超, 张临财, 亓敬波, 何小武. 类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能. 物理学报, 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [8] 王文杰, 康智林, 宋茜, 王鑫, 邓加军, 丁迅雷, 车剑滔. 层数变化对堆叠生长的MoS2(1-x) Se2x电子结构的影响. 物理学报, 2018, 67(24): 240601. doi: 10.7498/aps.67.20181494
    [9] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [10] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件. 物理学报, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [11] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春. ZnO纳米花的制备及其性能. 物理学报, 2015, 64(20): 207802. doi: 10.7498/aps.64.207802
    [12] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚. 包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响. 物理学报, 2015, 64(6): 067802. doi: 10.7498/aps.64.067802
    [13] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [14] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [15] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究. 物理学报, 2012, 61(5): 057201. doi: 10.7498/aps.61.057201
    [16] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [17] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [18] 金克新, 赵省贵, 陈长乐. Cu掺杂La0.67Sr0.33CuxMn1-xO3薄膜的光诱导效应研究. 物理学报, 2009, 58(7): 4953-4957. doi: 10.7498/aps.58.4953
    [19] 李宝河, 冯 春, 杨 涛, 翟中海, 滕 蛟, 于广华, 朱逢吾. Cu掺杂对FexPt1-x薄膜有序化的影响. 物理学报, 2006, 55(5): 2567-2571. doi: 10.7498/aps.55.2567
    [20] 朋兴平, 兰 伟, 谭永胜, 佟立国, 王印月. Cu掺杂氧化锌薄膜的发光特性研究. 物理学报, 2004, 53(8): 2705-2709. doi: 10.7498/aps.53.2705
计量
  • 文章访问数:  1706
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-08-09
  • 上网日期:  2023-08-14
  • 刊出日期:  2023-10-05

/

返回文章
返回