搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论重离子碰撞中的喷注淬火效应

张善良 邢宏喜 王恩科

引用本文:
Citation:

相对论重离子碰撞中的喷注淬火效应

张善良, 邢宏喜, 王恩科

Jet quenching effect in relativistic heavy-ion collisions

Zhang Shan-Liang, Xing Hong-Xi, Wang En-Ke
PDF
HTML
导出引用
  • 相对论重离子碰撞中产生了高温高密解禁闭的夸克胶子等离子体(QGP), 研究QGP的性质是高能核物理目前最重要的物理目标之一. 其中, 应用喷注淬火作为硬探针研究QGP的性质是一个非常重要的手段. 喷注淬火指的是相对论重离子碰撞中产生的高能部分子穿过QGP时, 通过强相互作用导致的能量损失效应. 本文主要介绍喷注淬火效应的最新研究进展, 具体包含喷注淬火效应对强子、喷注和喷注子结构的介质影响, 以及目前理论上面临的问题和困难.
    One of the main goals of high-energy nuclear physics is to explore the fundamental properties of quark-gluon plasma (QGP), a new state of quantum chromodynamics (QCD) matter created in relativistic heavy-ion collisions, in which the energetic quarks and gluons, known as fast partons, created prior to the formation of the QGP, traverse the hot-dense medium and experience strong interactions with the constituents of the medium, and eventually lead to the attenuation of jet energy. Such a novel phenomenon, referred to as jet quenching, plays an essential role in probing the transport properties of the QGP. The objective of this paper is to review some of the latest experimental and theoretical progress of jet quenching, such as medium modification on the large $ p_{\rm T} $ hadrons, full jets, and jet substructures in heavy-ion collisions, as well as the challenges in the forefront theoretical investigations.
      通信作者: 邢宏喜, hxing@m.scnu.edu.cn ; 王恩科, wangek@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12147131, 12035007, 12022512)和广东省基础与应用基础研究项目(批准号: 2020B0301030008, 2022A1515010683)资助的课题.
      Corresponding author: Xing Hong-Xi, hxing@m.scnu.edu.cn ; Wang En-Ke, wangek@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12147131, 12035007, 12022512) and the Major Project of Basic and Applied Basic Research of Guangdong Province, China (Grant Nos. 22020B0301030008, 2022A1515010683).
    [1]

    Adcox K, Adler S S, Afanasiev S, et al. 2005 Nucl. Phys. A 757 184Google Scholar

    [2]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Nucl. Phys. A 757 102Google Scholar

    [3]

    Back B B, Baker M D, Ballintijn M, et al. 2005 Nucl. Phys. A 757 28Google Scholar

    [4]

    Arsene I, Bearden I G, Beavis D, et al. 2005 Nucl. Phys. A 757 1Google Scholar

    [5]

    Bleicher M, Zabrodin E, Spieles C, et al. 1999 J. Phys. G 25 1859Google Scholar

    [6]

    Fodor Z, Katz S D 2004 JHEP 04 050 Google Scholar

    [7]

    Adam J, et al. 2016 Phys. Rev. C 93 024917Google Scholar

    [8]

    Qin G Y, Wang X N 2015 Int. J. Mod. Phys. E 24 1530014Google Scholar

    [9]

    Wang X N, Gyulassy M 1992 Phys. Rev. Lett. 68 1480Google Scholar

    [10]

    Baier R, Dokshitzer Y L, Mueller, et al. 1997 Nucl. Phys. B 483 291Google Scholar

    [11]

    Baier R, Dokshitzer Y L, et al. 1998 Phys. Rev. C 58 1706Google Scholar

    [12]

    Baier R, Schiff D, Zakharov B G 2000 Ann. Rev. Nucl. Part. Sci. 50 37Google Scholar

    [13]

    Eskola K J, Honkanen H, Salgado C A, Wiedemann U A 2005 Nucl. Phys. A 747 511Google Scholar

    [14]

    Zakharov B G 1996 JETP Lett. 63 952Google Scholar

    [15]

    Wiedemann U A 2001 Nucl. Phys. A 690 731Google Scholar

    [16]

    Armesto N, et al. 2012 Phys. Rev. C 86 064904Google Scholar

    [17]

    Guo X f, Wang X N 2000 Phys. Rev. Lett. 85 3591Google Scholar

    [18]

    Wang X N, Guo X f 2001 Nucl. Phys. A 696 788Google Scholar

    [19]

    Zhang B W, Wang E, Wang X N 2004 Phys. Rev. Lett. 93 072301Google Scholar

    [20]

    Zhang B W, Wang X N 2003 Nucl. Phys. A 720 429Google Scholar

    [21]

    Majumder A 2012 Phys. Rev. D 85 014023Google Scholar

    [22]

    Arnold P B, Moore G D, Yaffe L G 2002 JHEP 06 030Google Scholar

    [23]

    Gyulassy M, Levai P, Vitev I 2000 Phys. Rev. Lett. 85 5535Google Scholar

    [24]

    Gyulassy M, Levai P, Vitev I 2001 Nucl. Phys. B 594 371Google Scholar

    [25]

    Zapp K C 2014 Eur. Phys. J. C 74 2762Google Scholar

    [26]

    Lokhtin I P, Snigirev A M 2006 Eur. Phys. J. C 45 211Google Scholar

    [27]

    Pablos D 2020 Phys. Rev. Lett. 124 052301Google Scholar

    [28]

    Schenke B, Gale C, Jeon S 2009 Phys. Rev. C 80 054913Google Scholar

    [29]

    Ke W, Xu Y, Bass S A 2019 Phys. Rev. C 100 064911Google Scholar

    [30]

    Tachibana Y, Chang N B, Qin G Y 2017 Phys. Rev. C 95 044909Google Scholar

    [31]

    Wang X N, Zhu Y 2013 Phys. Rev. Lett. 111 062301Google Scholar

    [32]

    He Y, Luo T, Wang X N, Zhu Y 2015 Phys. Rev. C 91 054908 [Erratum: Phys. Rev. C 97, 019902 (2018)Google Scholar

    [33]

    Cao S, Luo T, Qin G Y, Wang X N 2016 Phys. Rev. C 94 014909Google Scholar

    [34]

    Cao S, et al. 2017 Phys. Rev. C 96 024909Google Scholar

    [35]

    Auvinen J, Eskola K J, Renk T 2010 Phys. Rev. C 82 024906Google Scholar

    [36]

    Chen W, Cao S, Luo T, et al. 2018 Phys. Lett. B 777 86Google Scholar

    [37]

    Luo T, Cao S, He Y, Wang X N 2018 Phys. Lett. B 782 707Google Scholar

    [38]

    Zhang S L, Luo T, Wang X N, Zhang B W 2018 Phys. Rev. C 98 021901Google Scholar

    [39]

    He Y, Cao S, Chen W, et al. 2019 Phys. Rev. C 99 054911Google Scholar

    [40]

    He Y, Pang L G, Wang X N 2019 Phys. Rev. Lett. 122 252302Google Scholar

    [41]

    He Y, Pang L G, Wang X N 2020 Phys. Rev. Lett. 125 122301Google Scholar

    [42]

    Chen W, Cao S, Luo T, et al. 2020 Phys. Lett. B 810 135783Google Scholar

    [43]

    Adler S S, et al. 2003 Phys. Rev. Lett. 91 072301Google Scholar

    [44]

    Adams J, et al. 2003 Phys. Rev. Lett. 91 172302Google Scholar

    [45]

    Adler C, et al. 2003 Phys. Rev. Lett. 90 082302Google Scholar

    [46]

    Aamodt K, et al. 2011 Phys. Lett. B 696 30Google Scholar

    [47]

    Chatrchyan S, et al. 2012 Eur. Phys. J. C 72 1945Google Scholar

    [48]

    Burke K M, et al. 2014 Phys. Rev. C 90 014909Google Scholar

    [49]

    Cao S, et al. 2021 Phys. Rev. C 104 024905Google Scholar

    [50]

    Xie M, Ke W, Zhang H, Wang X N 2023 Phys. Rev. C 108 L011901Google Scholar

    [51]

    Zhang S L, Liao J, Qin G Y, et al. 2023 Sci. Bull. 68 2003Google Scholar

    [52]

    Xing W J, Cao S, Qin G Y 2023 arXiv: 2303.12485

    [53]

    Chen X, Zhang H, Zhang B W, et al. 2010 J. Phys. 37 015004Google Scholar

    [54]

    Sterman G F, Weinberg S 1977 Phys. Rev. Lett. 39 1436Google Scholar

    [55]

    Chatrchyan S, et al. 2011 Phys. Rev. C 84 024906Google Scholar

    [56]

    Aad G, et al. 2013 Phys. Lett. B 719 220Google Scholar

    [57]

    Sirunyan A M, et al. 2018 Phys. Lett. B 785 14Google Scholar

    [58]

    Sirunyan A M, et al. 2017 Phys. Rev. Lett. 119 082301Google Scholar

    [59]

    Dai W, Vitev I, Zhang B W 2013 Phys. Rev. Lett. 110 142001Google Scholar

    [60]

    Chen L, Qin G Y, Wang L, et al. 2018 Nucl. Phys. B 933 306Google Scholar

    [61]

    Neufeld R B, Vitev I, Zhang B W 2011 Phys. Rev. C 83 034902Google Scholar

    [62]

    Neufeld R B, Vitev I 2012 Phys. Rev. Lett. 108 242001Google Scholar

    [63]

    Casalderrey-Solana J, Gulhan D C, Milhano J G, et al. 2016 JHEP 03 053Google Scholar

    [64]

    Kunnawalkam Elayavalli R, Zapp K C 2016 Eur. Phys. J. C 76 695Google Scholar

    [65]

    Kang Z B, Vitev I, Xing H 2017 Phys. Rev. C 96 014912Google Scholar

    [66]

    Zhang S L, Wang X N, Zhang B W 2022 Phys. Rev. C 105 054902Google Scholar

    [67]

    Aad G, et al. 2023 Phys. Lett. B 846 138154Google Scholar

    [68]

    Aad G, et al. 2023 Eur. Phys. J. C 83 438Google Scholar

    [69]

    Aaboud M, et al. 2019 Phys. Lett. B 790 108Google Scholar

    [70]

    Zhang S L, Wang E, Xing H, et al. 2023 arXiv: 2303.14881

    [71]

    Horowitz W A, Gyulassy M 2008 Phys. Lett. B 666 320Google Scholar

    [72]

    Huang J, Kang Z B, Vitev I 2013 Phys. Lett. B 726 251Google Scholar

    [73]

    Xing W J, Cao S, Qin G Y, Xing H 2020 Phys. Lett. B 805 135424Google Scholar

    [74]

    Sirunyan A M, et al. 2021 JHEP 05 284Google Scholar

    [75]

    ALICE 2023 arXiv: 2303.00592

    [76]

    Zhang S L, Yang M Q 2023 In preparation

    [77]

    Zhang S L, Yang M Q, Zhang B W 2022 Eur. Phys. J. C 82 414Google Scholar

    [78]

    Acharya S, et al. 2018 Phys. Lett. B 776 249Google Scholar

    [79]

    Connors M, Nattrass C, Reed R, Salur S 2018 Rev. Mod. Phys. 90 025005Google Scholar

    [80]

    Cunqueiro L 2016 Nucl. Phys. A 956 593Google Scholar

    [81]

    Yan J, Chen S Y, Dai W, et al. 2021 Chin. Phys. C 45 024102Google Scholar

    [82]

    Zardoshti N 2017 Nucl. Phys. A 967 560Google Scholar

    [83]

    Krohn D, Schwartz M D, Lin T, Waalewijn W J 2013 Phys. Rev. Lett. 110 212001Google Scholar

    [84]

    Chen S Y, Zhang B W, Wang E K 2020 Chin. Phys. C 44 024103Google Scholar

    [85]

    Chen S Y, Dai W, Zhang S L, et al. 2020 Eur. Phys. J. C 80 865Google Scholar

    [86]

    Sirunyan A M, et al. 2019 Phys. Rev. Lett. 122 152001Google Scholar

    [87]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 121 242301Google Scholar

    [88]

    Aaboud M, et al. 2019 Phys. Rev. Lett. 123 042001Google Scholar

    [89]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 120 142302Google Scholar

    [90]

    Chang N B, Tachibana Y, Qin G Y 2020 Phys. Lett. B 801 135181Google Scholar

    [91]

    Zhang S L, Xing H, Zhang B W 2022 arXiv: 2209.15336

    [92]

    Gottschalk T D 1983 Nucl. Phys. B 214 201Google Scholar

    [93]

    Gottschalk T D 1984 Nucl. Phys. B 239 349Google Scholar

    [94]

    Gottschalk T D, Morris D A 1987 Nucl. Phys. B 288 729Google Scholar

    [95]

    Webber B R 1984 Nucl. Phys. B 238 492Google Scholar

    [96]

    Larkoski A J, Marzani S, Soyez G, et al. 2014 JHEP 05 146Google Scholar

    [97]

    Acharya S, et al. 2020 Phys. Lett. B 802 135227Google Scholar

  • 图 1  (a) 根据不同能量损失机制对RHIC和LHC 中强子的核修正因子进行分析提取QGP的输运参数$ {\hat{q}} $与初始温度的依赖关系[48]; (b) 根据不同的模型以及参数化形式提取的输运参数$ {\hat{q}} $对介质演化温度的依赖关系[49,50]

    Fig. 1.  (a) The dependence of transport coefficient $ {\hat{q}} $ on the initial temperature T, extracted from the nuclear modification factor of hadrons from RHIC and LHC measurements[48], based on four different energy lose formalism; (b) the dependence of transport coefficient $ {\hat{q}} $ on the evolution temperature T, extracted with different models and parameterized functions[49,50]

    图 2  (a) 通过$ J/\varPsi $的核修正因子贝叶斯分析提取的胶子和粲夸克的能量损失分布[51]; (b) 同时对轻味强子, D介子以及B介子衰变的$ J/\varPsi $ 的核修正因子进行系统的贝叶斯分析提取的胶子, 轻味夸克, c夸克和b夸克的平均能量损失份额[52]

    Fig. 2.  (a) The final extracted energy loss distributions of charm quark and gluon from Bayesian analysis to experimental data on inclusive J/ψ [51]; (b) fractional jet energy loss of gluon, light quarks, charm quarks and bottom quarks from Bayesian analysis to experimental data on the RAA of charged hadrons, D mesons and B-decayed J/ψ [52].

    图 3  单半举喷注, 光子标记喷注和b夸克喷注的微分散射截面, 夸克胶子份额和核修正因子[70], 并与实验测量结果进行比较

    Fig. 3.  The differential cross sections of, fraction of quark and gluon in, nuclear modification factor of inclusive jet, γ-tagged jet, and b-jet[70] as well as the comparison with experimental data[67-69].

    图 4  (a) 5.02 TeV Pb+Pb碰撞中胶子喷注(红色)、夸克喷注(蓝色)、单举喷注(绿色)的核修正因子$R_{{\rm{AA}}} $的中心度依赖[70]; (b) 最终拟合的b-喷注、单举喷注、光子标记喷注的核修正因子$ R_{{\rm{AA}}}$, 以及数据驱动提取出的胶子喷注、轻夸克喷注和b夸克喷注的$ R_{{\rm{AA}}}$和能量损失分布[70]

    Fig. 4.  (a) The centrality dependence of final fitted gluon jet (red), quark jet (blue) and inclusive jet (green) $ R_{{\rm{AA}}} $ in Pb+Pb collisions at 5.02 TeV[70]; (b) final fitted nuclear modification factor $ R_{{\rm{AA}}} $ of b-jets, inclusive jet and γ-tagged jet, and the data-driven extracted $ R_{{\rm{AA}}} $ and energy loss distributions of gluon, light quark, and b-quark initiated jets[70].

    图 5  (a) CMS测量的在不同横动量区间内喷注锥角为R = 0.3—1.0的单半举喷注的核修正因子与R = 0.2的结果的比值对R的分布, 及与理论模型计算结果的比较[74]; (b) ALICE测量的R = 0.6的带电强子重建喷注的核修正因子与R = 0.2的结果的比值, 并与理论模型进行比较[75]

    Fig. 5.  (a) The double ratio $ R_{{\rm{AA}}} $ for inclusive jet, as a function of R, for R = 0.3–1.0 with respect to R = 0.2 in various $ p_{\rm{T}}^J $ ranges for the 0–10% centrality class as well as the comparison with model calculations[74]; (b) the ratio of charged jet $ R_{{\rm{AA}}} $ with R = 0.6 to that with R = 0.2 measured by ALICE[75] and the comparison with model calculations.

    图 6  (a)部分子层次和强子层次的不同喷注锥角的微分散射截面与R = 1.0的微分散射截面的比值并与实验结果的比较(左图), 强子层次的散射截面与部分子层次的散射截面的比值(右图); (b)单喷注以及重建喷注的核修正因子对喷注锥角的依赖分布. 图片来源于文献[76]

    Fig. 6.  (a) The ratio of inclusive jet cross section with R = 0.2, 0.3, 0.4, 0.6, 0.8 with respect to R = 1.0 calculated as parton level and hadron level as well as the comparison with CMS data (left); the ratio of jet cross section at hadron level to parton level with different jet cones (right); (b) jet cone dependent $ R_{{\rm{AA}}} $ of inclusive jet and reclustered jet. Pictures are taken from Ref [76].

    图 7  基于部分子层次和团簇强子模型计算的光子标记喷注的喷注形状(a)与光子标记喷注的碎裂函数(b)以及它们的介质修正[91]

    Fig. 7.  Distributions of and $ R_{{\rm{AA}}} $ of jet shape (a) and jet fragmentation function (b) calculated at parton and hadron level[91].

    图 8  基于团簇强子化模型计算的质子-质子碰撞和核核碰撞中Z玻色子与其标记的带电强子的方位角关联(a)以及Z玻色子标记的带电强子相对于Z玻色的碎裂函数(b)[91]

    Fig. 8.  (a)The azimuthal angle correlation $ \Delta \phi_{Z, {\rm{ch}}} $ between charged hadron and the recoiling Z boson; (b) the fragmentation pattern of the charged hadron recoiling from a Z boson[91].

    图 9  CMS测量的单喷注在不同的动量区间内的修饰的碎裂函数$ z_{\rm g} $的介质修正, 并与理论模型的计算结果进行比较[89]

    Fig. 9.  Medium modification on groomed fragmentation function $ z_{\rm{g}} $ of inclusive jet in different $ p_{\rm{T}} $ intervals measured by CMS and the comparison with model calculations[89].

  • [1]

    Adcox K, Adler S S, Afanasiev S, et al. 2005 Nucl. Phys. A 757 184Google Scholar

    [2]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Nucl. Phys. A 757 102Google Scholar

    [3]

    Back B B, Baker M D, Ballintijn M, et al. 2005 Nucl. Phys. A 757 28Google Scholar

    [4]

    Arsene I, Bearden I G, Beavis D, et al. 2005 Nucl. Phys. A 757 1Google Scholar

    [5]

    Bleicher M, Zabrodin E, Spieles C, et al. 1999 J. Phys. G 25 1859Google Scholar

    [6]

    Fodor Z, Katz S D 2004 JHEP 04 050 Google Scholar

    [7]

    Adam J, et al. 2016 Phys. Rev. C 93 024917Google Scholar

    [8]

    Qin G Y, Wang X N 2015 Int. J. Mod. Phys. E 24 1530014Google Scholar

    [9]

    Wang X N, Gyulassy M 1992 Phys. Rev. Lett. 68 1480Google Scholar

    [10]

    Baier R, Dokshitzer Y L, Mueller, et al. 1997 Nucl. Phys. B 483 291Google Scholar

    [11]

    Baier R, Dokshitzer Y L, et al. 1998 Phys. Rev. C 58 1706Google Scholar

    [12]

    Baier R, Schiff D, Zakharov B G 2000 Ann. Rev. Nucl. Part. Sci. 50 37Google Scholar

    [13]

    Eskola K J, Honkanen H, Salgado C A, Wiedemann U A 2005 Nucl. Phys. A 747 511Google Scholar

    [14]

    Zakharov B G 1996 JETP Lett. 63 952Google Scholar

    [15]

    Wiedemann U A 2001 Nucl. Phys. A 690 731Google Scholar

    [16]

    Armesto N, et al. 2012 Phys. Rev. C 86 064904Google Scholar

    [17]

    Guo X f, Wang X N 2000 Phys. Rev. Lett. 85 3591Google Scholar

    [18]

    Wang X N, Guo X f 2001 Nucl. Phys. A 696 788Google Scholar

    [19]

    Zhang B W, Wang E, Wang X N 2004 Phys. Rev. Lett. 93 072301Google Scholar

    [20]

    Zhang B W, Wang X N 2003 Nucl. Phys. A 720 429Google Scholar

    [21]

    Majumder A 2012 Phys. Rev. D 85 014023Google Scholar

    [22]

    Arnold P B, Moore G D, Yaffe L G 2002 JHEP 06 030Google Scholar

    [23]

    Gyulassy M, Levai P, Vitev I 2000 Phys. Rev. Lett. 85 5535Google Scholar

    [24]

    Gyulassy M, Levai P, Vitev I 2001 Nucl. Phys. B 594 371Google Scholar

    [25]

    Zapp K C 2014 Eur. Phys. J. C 74 2762Google Scholar

    [26]

    Lokhtin I P, Snigirev A M 2006 Eur. Phys. J. C 45 211Google Scholar

    [27]

    Pablos D 2020 Phys. Rev. Lett. 124 052301Google Scholar

    [28]

    Schenke B, Gale C, Jeon S 2009 Phys. Rev. C 80 054913Google Scholar

    [29]

    Ke W, Xu Y, Bass S A 2019 Phys. Rev. C 100 064911Google Scholar

    [30]

    Tachibana Y, Chang N B, Qin G Y 2017 Phys. Rev. C 95 044909Google Scholar

    [31]

    Wang X N, Zhu Y 2013 Phys. Rev. Lett. 111 062301Google Scholar

    [32]

    He Y, Luo T, Wang X N, Zhu Y 2015 Phys. Rev. C 91 054908 [Erratum: Phys. Rev. C 97, 019902 (2018)Google Scholar

    [33]

    Cao S, Luo T, Qin G Y, Wang X N 2016 Phys. Rev. C 94 014909Google Scholar

    [34]

    Cao S, et al. 2017 Phys. Rev. C 96 024909Google Scholar

    [35]

    Auvinen J, Eskola K J, Renk T 2010 Phys. Rev. C 82 024906Google Scholar

    [36]

    Chen W, Cao S, Luo T, et al. 2018 Phys. Lett. B 777 86Google Scholar

    [37]

    Luo T, Cao S, He Y, Wang X N 2018 Phys. Lett. B 782 707Google Scholar

    [38]

    Zhang S L, Luo T, Wang X N, Zhang B W 2018 Phys. Rev. C 98 021901Google Scholar

    [39]

    He Y, Cao S, Chen W, et al. 2019 Phys. Rev. C 99 054911Google Scholar

    [40]

    He Y, Pang L G, Wang X N 2019 Phys. Rev. Lett. 122 252302Google Scholar

    [41]

    He Y, Pang L G, Wang X N 2020 Phys. Rev. Lett. 125 122301Google Scholar

    [42]

    Chen W, Cao S, Luo T, et al. 2020 Phys. Lett. B 810 135783Google Scholar

    [43]

    Adler S S, et al. 2003 Phys. Rev. Lett. 91 072301Google Scholar

    [44]

    Adams J, et al. 2003 Phys. Rev. Lett. 91 172302Google Scholar

    [45]

    Adler C, et al. 2003 Phys. Rev. Lett. 90 082302Google Scholar

    [46]

    Aamodt K, et al. 2011 Phys. Lett. B 696 30Google Scholar

    [47]

    Chatrchyan S, et al. 2012 Eur. Phys. J. C 72 1945Google Scholar

    [48]

    Burke K M, et al. 2014 Phys. Rev. C 90 014909Google Scholar

    [49]

    Cao S, et al. 2021 Phys. Rev. C 104 024905Google Scholar

    [50]

    Xie M, Ke W, Zhang H, Wang X N 2023 Phys. Rev. C 108 L011901Google Scholar

    [51]

    Zhang S L, Liao J, Qin G Y, et al. 2023 Sci. Bull. 68 2003Google Scholar

    [52]

    Xing W J, Cao S, Qin G Y 2023 arXiv: 2303.12485

    [53]

    Chen X, Zhang H, Zhang B W, et al. 2010 J. Phys. 37 015004Google Scholar

    [54]

    Sterman G F, Weinberg S 1977 Phys. Rev. Lett. 39 1436Google Scholar

    [55]

    Chatrchyan S, et al. 2011 Phys. Rev. C 84 024906Google Scholar

    [56]

    Aad G, et al. 2013 Phys. Lett. B 719 220Google Scholar

    [57]

    Sirunyan A M, et al. 2018 Phys. Lett. B 785 14Google Scholar

    [58]

    Sirunyan A M, et al. 2017 Phys. Rev. Lett. 119 082301Google Scholar

    [59]

    Dai W, Vitev I, Zhang B W 2013 Phys. Rev. Lett. 110 142001Google Scholar

    [60]

    Chen L, Qin G Y, Wang L, et al. 2018 Nucl. Phys. B 933 306Google Scholar

    [61]

    Neufeld R B, Vitev I, Zhang B W 2011 Phys. Rev. C 83 034902Google Scholar

    [62]

    Neufeld R B, Vitev I 2012 Phys. Rev. Lett. 108 242001Google Scholar

    [63]

    Casalderrey-Solana J, Gulhan D C, Milhano J G, et al. 2016 JHEP 03 053Google Scholar

    [64]

    Kunnawalkam Elayavalli R, Zapp K C 2016 Eur. Phys. J. C 76 695Google Scholar

    [65]

    Kang Z B, Vitev I, Xing H 2017 Phys. Rev. C 96 014912Google Scholar

    [66]

    Zhang S L, Wang X N, Zhang B W 2022 Phys. Rev. C 105 054902Google Scholar

    [67]

    Aad G, et al. 2023 Phys. Lett. B 846 138154Google Scholar

    [68]

    Aad G, et al. 2023 Eur. Phys. J. C 83 438Google Scholar

    [69]

    Aaboud M, et al. 2019 Phys. Lett. B 790 108Google Scholar

    [70]

    Zhang S L, Wang E, Xing H, et al. 2023 arXiv: 2303.14881

    [71]

    Horowitz W A, Gyulassy M 2008 Phys. Lett. B 666 320Google Scholar

    [72]

    Huang J, Kang Z B, Vitev I 2013 Phys. Lett. B 726 251Google Scholar

    [73]

    Xing W J, Cao S, Qin G Y, Xing H 2020 Phys. Lett. B 805 135424Google Scholar

    [74]

    Sirunyan A M, et al. 2021 JHEP 05 284Google Scholar

    [75]

    ALICE 2023 arXiv: 2303.00592

    [76]

    Zhang S L, Yang M Q 2023 In preparation

    [77]

    Zhang S L, Yang M Q, Zhang B W 2022 Eur. Phys. J. C 82 414Google Scholar

    [78]

    Acharya S, et al. 2018 Phys. Lett. B 776 249Google Scholar

    [79]

    Connors M, Nattrass C, Reed R, Salur S 2018 Rev. Mod. Phys. 90 025005Google Scholar

    [80]

    Cunqueiro L 2016 Nucl. Phys. A 956 593Google Scholar

    [81]

    Yan J, Chen S Y, Dai W, et al. 2021 Chin. Phys. C 45 024102Google Scholar

    [82]

    Zardoshti N 2017 Nucl. Phys. A 967 560Google Scholar

    [83]

    Krohn D, Schwartz M D, Lin T, Waalewijn W J 2013 Phys. Rev. Lett. 110 212001Google Scholar

    [84]

    Chen S Y, Zhang B W, Wang E K 2020 Chin. Phys. C 44 024103Google Scholar

    [85]

    Chen S Y, Dai W, Zhang S L, et al. 2020 Eur. Phys. J. C 80 865Google Scholar

    [86]

    Sirunyan A M, et al. 2019 Phys. Rev. Lett. 122 152001Google Scholar

    [87]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 121 242301Google Scholar

    [88]

    Aaboud M, et al. 2019 Phys. Rev. Lett. 123 042001Google Scholar

    [89]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 120 142302Google Scholar

    [90]

    Chang N B, Tachibana Y, Qin G Y 2020 Phys. Lett. B 801 135181Google Scholar

    [91]

    Zhang S L, Xing H, Zhang B W 2022 arXiv: 2209.15336

    [92]

    Gottschalk T D 1983 Nucl. Phys. B 214 201Google Scholar

    [93]

    Gottschalk T D 1984 Nucl. Phys. B 239 349Google Scholar

    [94]

    Gottschalk T D, Morris D A 1987 Nucl. Phys. B 288 729Google Scholar

    [95]

    Webber B R 1984 Nucl. Phys. B 238 492Google Scholar

    [96]

    Larkoski A J, Marzani S, Soyez G, et al. 2014 JHEP 05 146Google Scholar

    [97]

    Acharya S, et al. 2020 Phys. Lett. B 802 135227Google Scholar

  • [1] 寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强. 相对论重离子碰撞中的手征效应实验研究. 物理学报, 2023, 72(11): 112504. doi: 10.7498/aps.72.20230109
    [2] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [3] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [4] 刘鹤, 初鹏程. 相对论重离子碰撞中π介子椭圆流劈裂. 物理学报, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [5] 江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威. RHIC能区Au+Au 碰撞中带电粒子直接流与超子整体极化的计算与分析. 物理学报, 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [6] 杨帅, 唐泽波, 杨驰, 查王妹. 相对论重离子碰撞中光子-光子相互作用的碰撞参数依赖性. 物理学报, 2023, 72(20): 201201. doi: 10.7498/aps.72.20230948
    [7] 管娜娜. 胶子非弹性散射过程对夸克胶子等离子体中双轻子产生的影响. 物理学报, 2016, 65(14): 142501. doi: 10.7498/aps.65.142501
    [8] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [9] 陈小凡. 相对论重离子碰撞中部分相干源的相干因子. 物理学报, 2012, 61(9): 092501. doi: 10.7498/aps.61.092501
    [10] 刘 炯, 袁业飞, 邓小龙. 等离子体中相对论电子的同步曲率辐射特性研究. 物理学报, 2007, 56(2): 1214-1223. doi: 10.7498/aps.56.1214
    [11] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [12] 王 斌, 唐昌建, 刘濮鲲. 离子通道中相对论电子注的切连科夫辐射. 物理学报, 2006, 55(11): 5953-5958. doi: 10.7498/aps.55.5953
    [13] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波. 物理学报, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [14] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波. 物理学报, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
    [15] 贺泽君, 蒋维渊, 朱志远, 刘 波. 夸克-胶子等离子体在相对论性核-核碰撞中形成的一种信号. 物理学报, 2000, 49(5): 911-914. doi: 10.7498/aps.49.911
    [16] 周小兵, 王志君, 盛光昭. 驻波驱动的等离子体电子相对论随机加速. 物理学报, 1995, 44(11): 1776-1782. doi: 10.7498/aps.44.1776
    [17] 屈一至, 仝晓民, 李家明. 电子与原子、离子碰撞过程的相对论效应. 物理学报, 1995, 44(11): 1719-1726. doi: 10.7498/aps.44.1719
    [18] 吴俊伶. 等离子体中相对论性电子回旋波色散关系. 物理学报, 1993, 42(5): 775-784. doi: 10.7498/aps.42.775
    [19] 郭世宠, 蔡诗东. 任意磁场位形下弱相对论等离子体的普遍色散关系. 物理学报, 1987, 36(7): 870-880. doi: 10.7498/aps.36.870
    [20] 孔繁梅, 罗马, 韩涛, 温暖. 用喷注电荷截面方法考察胶子信息. 物理学报, 1986, 35(2): 152-160. doi: 10.7498/aps.35.152
计量
  • 文章访问数:  3126
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-09-16
  • 上网日期:  2023-10-09
  • 刊出日期:  2023-10-20

/

返回文章
返回