搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La掺杂BaSnO3薄膜的低温电输运性质

杨健 高矿红 李志青

引用本文:
Citation:

La掺杂BaSnO3薄膜的低温电输运性质

杨健, 高矿红, 李志青

Low-temperature electrical transport properties of La doped BaSnO3 films

Yang Jian, Gao Kuang-Hong, Li Zhi-Qing
PDF
HTML
导出引用
  • 利用射频磁控溅射技术在MgO (001)单晶基片上沉积了一系列Ba0.94La0.06SnO3薄膜, 并对薄膜的结构和电输运性质进行了系统研究. 所有薄膜均表现出简并半导体 (金属) 导电特性: 在$T > {T_{\min }}$的高温区 (${T_{\min }}$为电阻最小值对应的温度), 薄膜的电阻率随温度的升高而升高, 并且与温度的平方呈线性关系. 在$T < {T_{\min }}$的低温区域, 薄膜的电阻率随温度降低而上升, 并且电阻率随$ \ln T $呈线性变化, 均匀无序系统中的电子-电子相互作用、弱局域效应以及Kondo效应均不能解释这种现象. 经过定量分析, 发现电阻率在低温下$ \ln T $的依赖关系源于颗粒间电子的库仑相互作用. 同时, 在Ba0.94La0.06SnO3薄膜中也观察到霍尔系数$ {R_{\text{H}}} $$ \ln T $呈线性关系, 并且该线性关系也定量的符合金属颗粒体系中库仑相互作用的理论. 薄膜断面高分辨透射电子显微镜结果表明, 虽然薄膜整体呈现外延结构, 但其中存在诸多条状非晶区域, 这使得薄膜整体表现出类似金属颗粒膜的电输运性质. 本文的结果为金属颗粒系统中库仑相互作用对电导率和霍尔系数修正理论的正确性提供了有力的支持.
    A series of Ba0.94La0.06SnO3 thin films are deposited on MgO(001) single crystal substrates by RF magnetron sputtering method, and their structure and electrical transport properties are systematically investigated. All films reveal degenerate semiconductor (metal) characteristics in electrical transport properties. In the high-temperature region ($T > {T_{\min }}$, where ${T_{\min }}$ is the temperature at which the resistivity reaches a minimum value), the resistivity of each film increases with temperature, and exhibits a linear relationship with the square of the temperature. In the low-temperature region ($T < {T_{\min }}$), the resistivity increases with decreasing temperature and varies linearly with $ \ln T $. This temperature dependent behavior of resistivity cannot be explained by the general electron-electron interaction or weak localization effects in homogeneous disordered conductors and nor by Kondo effect. After quantitative analysis, it is found that the $ \ln T $ behavior of resistivity at low temperatures can be explained by the electron-electron Coulomb interaction effect in the presence of granularity. In addition, it is found that the Hall coefficient $ {R_{\text{H}}} $ also varies linearly with $ \ln T $ for the Ba0.94La0.06SnO3 film, which also quantitatively accords with the theoretical prediction of the electron-electron Coulomb interaction effects in the granular metals. The results of cross-section high-resolution transmission electron microscope indicate that although the films have epitaxial structures as a whole, there are many strip-shaped amorphous regions in films, which makes the films have electrical transport properties similar to those of metal granular films. Our results provide strong support for the validity of the theory concerning the effects of Coulomb interaction on the conductivity and Hall coefficient in granular metals.
      通信作者: 李志青, zhiqingli@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174282)资助的课题.
      Corresponding author: Li Zhi-Qing, zhiqingli@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174282).
    [1]

    Luo X, Oh Y S, Sirenko A, Gao P, Tyson T A, Char K, Cheong S W 2012 Appl. Phys. Lett. 100 172112Google Scholar

    [2]

    Kim H J, Kim U, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H, Char K 2012 Appl. Phys. Express 5 061102Google Scholar

    [3]

    Kim H J, Kim U, Kim T H, Kim J, Kim H M, Jeon B G, Lee W J, Mun H S, Hong K T, Yu J, Char K, Kim K H 2012 Phys. Rev. B 86 165205Google Scholar

    [4]

    Kim K H, Kim J, Kim T H, Lee W J, Jeon B G, Park J Y, Choi W S, Jeong D W, Lee S H, Yu J, Noh T W, Kim H J 2013 Phys. Rev. B 88 125204Google Scholar

    [5]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [6]

    Zhang W, Tang J, Ye J 2007 J. Mater. Res. 22 1859Google Scholar

    [7]

    Lee W J, Kim H J, Kang J, Jang D H, Kim T H, Lee J H, Kim K H 2017 Ann. Rev. Matter. Res. 47 391Google Scholar

    [8]

    Cui J M, Zhang Y Y, Wang J L, Zhao Z B, Huang H L, Zou W, Yang M M, Peng R R, Yan W S, Huang Q P, Fu Z P, Lu Y L 2019 Phys. Rev. B 100 165312Google Scholar

    [9]

    Feng Z X, Qin P X, Yang Y L, Yan H, Guo H X, Wang X N, Zhou X R, Han Y Y, Yi J B, Qi D C, Yu X J, Breese M B H, Zhang X, Wu H J, Chen H Y, Xiang H J, Jiang C B, Liu Z Q 2021 Acta Mater. 204 116516Google Scholar

    [10]

    Eom K, Paik H, Seo J, Campbell N, Tsymbal E Y, Oh S H, Rzchowski M S, Schlom D G, Eom C B 2022 Adv. Sci. 9 2105652Google Scholar

    [11]

    Lee W J, Kim H J, Sohn E, Kim T H, Park J Y, Park W, Jeong H, Lee T, Kim J H, Choi K Y, Kim K H 2016 Appl. Phys. Lett. 108 82105Google Scholar

    [12]

    Park C, Kim U, Ju C J, Park J S, Kim Y M, Char K 2014 Appl. Phys. Lett. 105 203503Google Scholar

    [13]

    Sanchela A V, Wei M, Zensyo H, Feng B, Lee J, Kim G, Jeen H, Ikuhara Y, Ohta H 2018 Appl. Phys. Lett. 112 232102Google Scholar

    [14]

    Prakash A, Dewey J, Yun H, Jeong J S, Mkhoyan K A, Jalan B 2015 J. Vac. Sci. Technol. A 33 60608Google Scholar

    [15]

    Lebens-Higgins Z, Scanlon D O, Paik H, Sallis S, Nie Y, Uchida M, Quackenbush N F, Wahila M J, Sterbinsky G E, Arena D A, Woicik J C, Schlom D G, Piper L F J 2016 Phys. Rev. Lett. 116 027602Google Scholar

    [16]

    Raghavan S, Schumann T, Kim H, Zhang J Y, Cain T A, Stemmer S 2016 APL Mater. 4 016106Google Scholar

    [17]

    Prakash A, Xu P, Faghaninia A, Shukla S, Ager J W, Lo C S, Jalan B 2017 Nat. Commun. 8 15167Google Scholar

    [18]

    Prakash A, Xu P, Wu X, Haugstad G, Wang X J, Jalan B 2017 J. Mater. Chem. C 5 5730Google Scholar

    [19]

    Ganguly K, Prakash A, Jalan B, Leighton C 2017 APL Mater. 5 056102Google Scholar

    [20]

    Mountstevens E H, Attfield J P, Redfern S A T 2003 J. Phys. Condensed Matter 15 8315Google Scholar

    [21]

    Shannon R D 1976 Acta Cryst. A 32 751Google Scholar

    [22]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901Google Scholar

    [23]

    Hadjarab B, Bouguelia A, Trari M 2007 J. Phys. D Appl. Phys. 40 5833Google Scholar

    [24]

    Hadjarab B, Bouguelia A, Benchettara A, Trari M 2008 J. Alloys Compd. 461 360Google Scholar

    [25]

    Yasukawa M, Kono T, Ueda K, Yanagi H, Hosono H 2010 Mater. Sci. Eng. B 173 29Google Scholar

    [26]

    Echternach P M, Gershenson M E, Bozler H M 1993 Phys. Rev. B 47 13659Google Scholar

    [27]

    Yeh S S, Lin J J, Jing X, Zhang D 2005 Phys. Rev. B 72 024204Google Scholar

    [28]

    II’In K S, Ptitsina N G, Sergeev A V, Gol Tsman G N, Gershenzon E M, Karasik B S, Pechen E V, Krasnosvobodtsev S I 1998 Phys. Rev. B 57 15623Google Scholar

    [29]

    Gao Z H, Wang Z X, Hou D Y, Liu X D, Li Z Q 2022 J. Appl. Phys. 131 065109Google Scholar

    [30]

    Altshuler B L, Khmel’Nitzkii D, Larkin A I, Lee P A 1980 Phys. Rev. B 22 5142Google Scholar

    [31]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [32]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673Google Scholar

    [33]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [34]

    Fukuyama H, Hoshino K 1981 J. Phys. Soc. Jpn. 50 2131Google Scholar

    [35]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

    [36]

    Kawabata A 1980 J. Phys. Soc. Jpn. 49 628Google Scholar

    [37]

    Wu C Y, Lin J J 1994 Phys. Rev. B 50 385Google Scholar

    [38]

    Lin J J 2000 Physica B 279 191Google Scholar

    [39]

    Lin J J, Bird J P 2002 J. Phys. Condensed Matter 14 R501Google Scholar

    [40]

    Kondo J 1964 Prog. Theor. Phys. 32 37Google Scholar

    [41]

    Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp38–47

    [42]

    Xue H X, Hong Y P, Li C J, Meng J C, Li Y C, Liu K J, Liu M R, Jiang W M, Zhang Z, He L, Dou R F, Xiong C M, Nie J C 2018 Phys. Rev. B 98 085305Google Scholar

    [43]

    Das S, Rastogi A, Wu L J, Zheng J C, Hossain Z, Zhu Y M, Budhani R C 2014 Phys. Rev. B. 90 081107Google Scholar

    [44]

    Lee M, Williams J R, Zhang S P, Frisbie C D, Goldhaber-Gordon D 2011 Phys. Rev. Lett. 107 256601Google Scholar

    [45]

    Beloborodov I S, Efetov K B, Lopatin A V, Vinokur V M 2003 Phys. Rev. Lett. 91 246801Google Scholar

    [46]

    Efetov K B, Tschersich A 2003 Phys. Rev. B 67 174205Google Scholar

    [47]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469Google Scholar

    [48]

    Kharitonov M Y, Efetov K B 2007 Phys. Rev. Lett. 99 056803Google Scholar

    [49]

    Kharitonov M Y, Efetov K B 2008 Phys. Rev. B 77 045116Google Scholar

    [50]

    Zhang Y J, Li Z Q, Lin J J 2011 Phys. Rev. B 84 052202Google Scholar

    [51]

    Wu Y N, Wei Y F, Li Z Q, Lin J J 2015 Phys. Rev. B 91 104201Google Scholar

    [52]

    Rotkina L, Oh S, Eckstein J N, Rotkin S V 2005 Phys. Rev. B 72 233407Google Scholar

    [53]

    Achatz P, Gajewski W, Bustarret E, Marcenat C, Piquerel R, Chapelier C, Dubouchet T, Williams O A, Haenen K, Garrido J A, Stutzmann M 2009 Phys. Rev. B 79 201203Google Scholar

    [54]

    Sun Y C, Yeh S S, Lin J J 2010 Phys. Rev. B 82 054203Google Scholar

    [55]

    Sachser R, Porrati F, Schwalb C H, Huth M 2011 Phys. Rev. Lett. 107 206803Google Scholar

    [56]

    Yang Y, Zhang Y J, Liu X D, Li Z Q 2012 Appl. Phys. Lett. 100 262101Google Scholar

    [57]

    Zheng B, He Z H, Li Z Q 2019 Phys. Status Solidi Rapid Res. Lett. 13 1900123Google Scholar

  • 图 1  退火时间为0, 1和2 h的BLSO薄膜的XRD $\theta-2\theta $扫描图谱. 插图为退火2 h的 BLSO薄膜的 (111) 晶面的$ \phi $扫描图

    Fig. 1.  XRD $\theta-2\theta $ scan patters of BLSO films annealed in situ for 0, 1, and 2 h. The inset is the $ \phi $-scan spectrum of (111) plane for the BLSO film annealed for 2 h.

    图 2  (a) 退火时间为0, 1 和2 h 的BLSO薄膜的归一化电阻率$\rho /\rho (300{\text{ K}})$T (对数刻度) 的关系, 插图为$\rho /\rho (300{\text{ K}})$${T^2}$的关系; (b) 归一化电导率$\sigma /\sigma (300{\text{ K}})$${T^{1/2}}$的关系, 插图为$T = 2{\text{ K}}$时样品的磁电阻

    Fig. 2.  (a) Normalized resistivity $\rho /\rho (300{\text{ K}})$ varies as a function of T (logarithmic scale) for BLSO films annealed for 0, 1, and 2 h, inset is $\rho /\rho (300{\text{ K}})$vs. ${T^2}$ for the films; (b) normalized conductivity $\sigma /\sigma (300{\text{ K}})$ versus ${T^{1/2}}$, and the inset is the magnetoresistance of the samples at $T = 2{\text{ K}}$.

    图 3  退火0, 1和2 h (插图) 的BLSO 薄膜在零磁场下的$ \Delta \sigma $T (对数刻度)的关系, 实线是(3) 式拟合的结果

    Fig. 3.  At zero magnetic field, $ \Delta \sigma $ vs. T (logarithmic scale) for BLSO films annealed for 0, 1 and 2 h (inset), the solid lines are the fitting results using Eq. (3).

    图 4  薄膜的$ {R_{\text{H}}} $$ T $ (对数刻度) 的关系. 实心三角形是实验值, 实线是使用 (4) 式拟合得出的结果 (a) 退火0 h; (b) 退火1 h; (c) 退火2 h

    Fig. 4.  Temperature (logarithmic scale) dependence of $ {R_{\text{H}}} $ for films. The solid triangles are experimental values, and the solid lines are least-squares fits to Eq. (4): (a) Annealed for 0 h; (b) annealed for 1 h; (c) annealed for 2 h.

    图 5  (a) 退火1 h和 (b) 退火2 h的 BLSO薄膜的表面SEM图像; (c) 退火2 h薄膜的断面HRTEM形貌图; (d) 图 (c) 中虚线矩形区域的放大图

    Fig. 5.  SEM images for the surfaces of the BLSO films (a) annealed for 1 h and (b) annealed for 2 h; (c) cross-sectional HRTEM micrograph of the BLSO films annealed for 2 h; (d) the enlarged image of the dashed rectangular area in panel (c).

    表 1  BLSO薄膜的相关参数, 其中tA是薄膜原位退火时间, t是薄膜的厚度, $ {n^*} $是有效载流子浓度, $ {g_{\text{T}}} $是使用(3)式拟合电导率与温度关系得出的值, $ {c_{\text{d}}} $是使用(4)式拟合霍尔系数与温度关系得出的值

    Table 1.  Relevant parameters for BLSO films, where tA is in-situ annealing time. t is the thickness of the films. $ {n^*} $ is the mean value of carrier concentration, $ {g_{\text{T}}} $ is the value obtained by fitting the conductivity vs. temperature with Eq. (3), $ {c_{\text{d}}} $is the value obtained by fitting the Hall coefficient vs. temperature with Eq. (4).

    Sample tA/h t/nm ρ(300 K)/(mΩ·m) ρ(2 K)/(mΩ·m) D/(cm2·s–1) $ {n^*} $/(1020 cm–3) $ {g_{\text{T}}} $ $ {c_{\text{d}}} $
    No.1 0 800 0.3 0.33 0.09 1.20 1.53 0.81
    No.2 1 800 0.19 0.21 0.142 1.35 1.89 0.31
    No.3 2 500 0.084 0.079 0.037 1.44 6.15 0.75
    下载: 导出CSV
  • [1]

    Luo X, Oh Y S, Sirenko A, Gao P, Tyson T A, Char K, Cheong S W 2012 Appl. Phys. Lett. 100 172112Google Scholar

    [2]

    Kim H J, Kim U, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H, Char K 2012 Appl. Phys. Express 5 061102Google Scholar

    [3]

    Kim H J, Kim U, Kim T H, Kim J, Kim H M, Jeon B G, Lee W J, Mun H S, Hong K T, Yu J, Char K, Kim K H 2012 Phys. Rev. B 86 165205Google Scholar

    [4]

    Kim K H, Kim J, Kim T H, Lee W J, Jeon B G, Park J Y, Choi W S, Jeong D W, Lee S H, Yu J, Noh T W, Kim H J 2013 Phys. Rev. B 88 125204Google Scholar

    [5]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [6]

    Zhang W, Tang J, Ye J 2007 J. Mater. Res. 22 1859Google Scholar

    [7]

    Lee W J, Kim H J, Kang J, Jang D H, Kim T H, Lee J H, Kim K H 2017 Ann. Rev. Matter. Res. 47 391Google Scholar

    [8]

    Cui J M, Zhang Y Y, Wang J L, Zhao Z B, Huang H L, Zou W, Yang M M, Peng R R, Yan W S, Huang Q P, Fu Z P, Lu Y L 2019 Phys. Rev. B 100 165312Google Scholar

    [9]

    Feng Z X, Qin P X, Yang Y L, Yan H, Guo H X, Wang X N, Zhou X R, Han Y Y, Yi J B, Qi D C, Yu X J, Breese M B H, Zhang X, Wu H J, Chen H Y, Xiang H J, Jiang C B, Liu Z Q 2021 Acta Mater. 204 116516Google Scholar

    [10]

    Eom K, Paik H, Seo J, Campbell N, Tsymbal E Y, Oh S H, Rzchowski M S, Schlom D G, Eom C B 2022 Adv. Sci. 9 2105652Google Scholar

    [11]

    Lee W J, Kim H J, Sohn E, Kim T H, Park J Y, Park W, Jeong H, Lee T, Kim J H, Choi K Y, Kim K H 2016 Appl. Phys. Lett. 108 82105Google Scholar

    [12]

    Park C, Kim U, Ju C J, Park J S, Kim Y M, Char K 2014 Appl. Phys. Lett. 105 203503Google Scholar

    [13]

    Sanchela A V, Wei M, Zensyo H, Feng B, Lee J, Kim G, Jeen H, Ikuhara Y, Ohta H 2018 Appl. Phys. Lett. 112 232102Google Scholar

    [14]

    Prakash A, Dewey J, Yun H, Jeong J S, Mkhoyan K A, Jalan B 2015 J. Vac. Sci. Technol. A 33 60608Google Scholar

    [15]

    Lebens-Higgins Z, Scanlon D O, Paik H, Sallis S, Nie Y, Uchida M, Quackenbush N F, Wahila M J, Sterbinsky G E, Arena D A, Woicik J C, Schlom D G, Piper L F J 2016 Phys. Rev. Lett. 116 027602Google Scholar

    [16]

    Raghavan S, Schumann T, Kim H, Zhang J Y, Cain T A, Stemmer S 2016 APL Mater. 4 016106Google Scholar

    [17]

    Prakash A, Xu P, Faghaninia A, Shukla S, Ager J W, Lo C S, Jalan B 2017 Nat. Commun. 8 15167Google Scholar

    [18]

    Prakash A, Xu P, Wu X, Haugstad G, Wang X J, Jalan B 2017 J. Mater. Chem. C 5 5730Google Scholar

    [19]

    Ganguly K, Prakash A, Jalan B, Leighton C 2017 APL Mater. 5 056102Google Scholar

    [20]

    Mountstevens E H, Attfield J P, Redfern S A T 2003 J. Phys. Condensed Matter 15 8315Google Scholar

    [21]

    Shannon R D 1976 Acta Cryst. A 32 751Google Scholar

    [22]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901Google Scholar

    [23]

    Hadjarab B, Bouguelia A, Trari M 2007 J. Phys. D Appl. Phys. 40 5833Google Scholar

    [24]

    Hadjarab B, Bouguelia A, Benchettara A, Trari M 2008 J. Alloys Compd. 461 360Google Scholar

    [25]

    Yasukawa M, Kono T, Ueda K, Yanagi H, Hosono H 2010 Mater. Sci. Eng. B 173 29Google Scholar

    [26]

    Echternach P M, Gershenson M E, Bozler H M 1993 Phys. Rev. B 47 13659Google Scholar

    [27]

    Yeh S S, Lin J J, Jing X, Zhang D 2005 Phys. Rev. B 72 024204Google Scholar

    [28]

    II’In K S, Ptitsina N G, Sergeev A V, Gol Tsman G N, Gershenzon E M, Karasik B S, Pechen E V, Krasnosvobodtsev S I 1998 Phys. Rev. B 57 15623Google Scholar

    [29]

    Gao Z H, Wang Z X, Hou D Y, Liu X D, Li Z Q 2022 J. Appl. Phys. 131 065109Google Scholar

    [30]

    Altshuler B L, Khmel’Nitzkii D, Larkin A I, Lee P A 1980 Phys. Rev. B 22 5142Google Scholar

    [31]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [32]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673Google Scholar

    [33]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [34]

    Fukuyama H, Hoshino K 1981 J. Phys. Soc. Jpn. 50 2131Google Scholar

    [35]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

    [36]

    Kawabata A 1980 J. Phys. Soc. Jpn. 49 628Google Scholar

    [37]

    Wu C Y, Lin J J 1994 Phys. Rev. B 50 385Google Scholar

    [38]

    Lin J J 2000 Physica B 279 191Google Scholar

    [39]

    Lin J J, Bird J P 2002 J. Phys. Condensed Matter 14 R501Google Scholar

    [40]

    Kondo J 1964 Prog. Theor. Phys. 32 37Google Scholar

    [41]

    Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp38–47

    [42]

    Xue H X, Hong Y P, Li C J, Meng J C, Li Y C, Liu K J, Liu M R, Jiang W M, Zhang Z, He L, Dou R F, Xiong C M, Nie J C 2018 Phys. Rev. B 98 085305Google Scholar

    [43]

    Das S, Rastogi A, Wu L J, Zheng J C, Hossain Z, Zhu Y M, Budhani R C 2014 Phys. Rev. B. 90 081107Google Scholar

    [44]

    Lee M, Williams J R, Zhang S P, Frisbie C D, Goldhaber-Gordon D 2011 Phys. Rev. Lett. 107 256601Google Scholar

    [45]

    Beloborodov I S, Efetov K B, Lopatin A V, Vinokur V M 2003 Phys. Rev. Lett. 91 246801Google Scholar

    [46]

    Efetov K B, Tschersich A 2003 Phys. Rev. B 67 174205Google Scholar

    [47]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469Google Scholar

    [48]

    Kharitonov M Y, Efetov K B 2007 Phys. Rev. Lett. 99 056803Google Scholar

    [49]

    Kharitonov M Y, Efetov K B 2008 Phys. Rev. B 77 045116Google Scholar

    [50]

    Zhang Y J, Li Z Q, Lin J J 2011 Phys. Rev. B 84 052202Google Scholar

    [51]

    Wu Y N, Wei Y F, Li Z Q, Lin J J 2015 Phys. Rev. B 91 104201Google Scholar

    [52]

    Rotkina L, Oh S, Eckstein J N, Rotkin S V 2005 Phys. Rev. B 72 233407Google Scholar

    [53]

    Achatz P, Gajewski W, Bustarret E, Marcenat C, Piquerel R, Chapelier C, Dubouchet T, Williams O A, Haenen K, Garrido J A, Stutzmann M 2009 Phys. Rev. B 79 201203Google Scholar

    [54]

    Sun Y C, Yeh S S, Lin J J 2010 Phys. Rev. B 82 054203Google Scholar

    [55]

    Sachser R, Porrati F, Schwalb C H, Huth M 2011 Phys. Rev. Lett. 107 206803Google Scholar

    [56]

    Yang Y, Zhang Y J, Liu X D, Li Z Q 2012 Appl. Phys. Lett. 100 262101Google Scholar

    [57]

    Zheng B, He Z H, Li Z Q 2019 Phys. Status Solidi Rapid Res. Lett. 13 1900123Google Scholar

  • [1] 丁怡洋, 邹帅, 孙华, 苏晓东. 金属网格-透明导电氧化物复合型透明电极的瑞利分析和仿真. 物理学报, 2024, 73(14): 146801. doi: 10.7498/aps.73.20240230
    [2] 蔡文博, 杨洋, 李志青. TiO薄膜的制备及电输运性质. 物理学报, 2023, 72(22): 227302. doi: 10.7498/aps.72.20231083
    [3] 敬婧, 李致朋, 卢伟胜, 王宏宇, 杨祖安, 杨毅, 尹祺圣, 杨馥菱, 沈晓明, 曾建民, 詹锋. 一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜. 物理学报, 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [4] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [5] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响. 物理学报, 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [6] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [7] 周定邦, 刘新典, 李志青. 多晶TaN1-薄膜的电输运性质研究. 物理学报, 2015, 64(19): 197302. doi: 10.7498/aps.64.197302
    [8] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎. 1,4-丁二硫醇分子器件电输运性质的力敏特性研究. 物理学报, 2014, 63(6): 068501. doi: 10.7498/aps.63.068501
    [9] 焦惠丛, 安兴涛, 刘建军. 量子点接触中有关电导0.7结构的研究. 物理学报, 2013, 62(1): 017301. doi: 10.7498/aps.62.017301
    [10] 纳元元, 王聪, 褚立华, 丁磊, 闫君. 不同氮流量制备Mn3CuNx薄膜及其电、磁输运性质的研究. 物理学报, 2012, 61(3): 036801. doi: 10.7498/aps.61.036801
    [11] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [12] 胡伟, 李宗良, 马勇, 李英德, 王传奎. 单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应. 物理学报, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [13] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究. 物理学报, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [14] 陈新亮, 薛俊明, 张德坤, 孙 建, 任慧志, 赵 颖, 耿新华. 衬底温度对MOCVD法沉积ZnO透明导电薄膜的影响. 物理学报, 2007, 56(3): 1563-1567. doi: 10.7498/aps.56.1563
    [15] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [16] 马瑾怡, 邱锡钧. 强光场中电子系统与多光子的相互作用. 物理学报, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
    [17] 胡文英, 曾雉, 郑庆祺, 黄美纯. 电子间关联作用对过渡金属氧化物磁矩的影响. 物理学报, 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
    [18] 余超凡, 陈斌, 何国柱. 巡游电子系统中电子-声子相互作用对磁性激发的影响. 物理学报, 1994, 43(5): 839-845. doi: 10.7498/aps.43.839
    [19] 李君清, 顾金南, 朱介鼎. 氦原子中双电子相互作用及其能谱的统计涨落性质. 物理学报, 1991, 40(10): 1567-1574. doi: 10.7498/aps.40.1567
    [20] 孙鑫. 铁磁体中导电电子与自旋波的相互作用. 物理学报, 1964, 20(3): 193-206. doi: 10.7498/aps.20.193
计量
  • 文章访问数:  2420
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-02
  • 修回日期:  2023-08-02
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回