搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于X射线荧光光谱的温稠密物质电子结构密度效应研究

张志宇 赵阳 青波 张继彦 马建毅 林成亮 杨国洪 韦敏习 熊刚 吕敏 黄成武 朱托 宋天明 赵妍 张玉雪 张璐 李丽灵 杜华冰 车兴森 黎宇坤 詹夏宇 杨家敏

引用本文:
Citation:

基于X射线荧光光谱的温稠密物质电子结构密度效应研究

张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏

Density effect on electronic structure of warm dense matter based on X-ray fluorescence spectroscopy

Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Ma Jian-Yi, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min
PDF
HTML
导出引用
  • 受密度及温度等环境效应影响, 温稠密物质的电子结构显著变化, 其理论描述非常复杂, 精密实验数据亦非常缺乏. 本文通过发展主动探测的X 射线荧光光谱方法, 从实验上定量研究了密度效应对温稠密物质电子结构的影响, 有助于深入理解温稠密物质的电子结构变化, 并为相关理论模型提供实验验证. 在万焦耳激光装置上, 设计特殊构型黑腔加载约2 倍固体密度、2 eV的Ti样品. 利用激光辐照V产生的热发射线泵浦Ti的荧光, 并采用高效高分辨的晶体谱仪诊断样品的X射线荧光光谱. 实验结果显示, 2倍固体密度Ti样品荧光谱线${\mathrm{K}}_{\text{β}} $$ {\mathrm{K}}_{\text{α}} $的能量差($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$)相对于冷样品红移约2 eV. 理论上采用两种方法进行计算并与实验结果比较, 其中有限温度相对论密度泛函方法高估了密度效应对谱线移动的影响, 而“two-step Hartree-Fock-Slater”方法低估了密度效应的影响.
    Warm dense matter (WDM), a kind of transition state of matter between cold condensed matter and high temperature plasma, is one of the main research objects of high energy density physics (HEDP). Compared with the structure of isolated atom, the electron structure of WDM will change significantly because of the influences of density and temperature effect. As WDM is always strongly coupled and partly degenerate, accurate theoretical description is very complicated and the accurate experimental research is also very challenging. In this paper, the density effect on the warm dense matter electron structure based on the X-ray fluorescence spectroscopy is studied. The warm dense titanium with density larger than solid density is produced experimentally based on a specially designed hohlraum. Then, the titanium is pumped to emit fluorescence by using the characteristic line spectrum emitted by the laser irradiating the pump material (Vanadium). The X-ray fluorescence spectra of titanium with different states are diagnosed by changing the delay time between the pump laser and drive laser. The experimental fluorescence spectrum indicates that the difference in energy between ${\mathrm{K}}_{\text{β}} $ and $ {\mathrm{K}}_{\text{α}} $ ($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$) of the compressed titanium (7.2–9.2 g/cm3, 1.6–2.4 eV) is about 2 eV smaller than that of cold titanium. Two theoretical methods, i.e. finite-temperature relativistic density functional theory (FTRDFT) and two-step Hartree-Fock-Slater (TSHFS), are used to calculate the fluorescence spectrum of warm dense titanium. The calculated results indicate that the energy difference ($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}} $) decreases with the increase of density but changes slowly with the increase of temperature during the calculated state (4.5–13.5 g/cm3, 0.03–5 eV). The FTRDFT overestimates the density effect on the line shift, while TSHFS underestimates the density effect. The future work will focus on optimizing the experimental method of X-ray fluorescence spectroscopy, obtaining X-ray fluorescence spectrum of titanium with more states, and then testing the theoretical method for warm dense matter.
      通信作者: 杨家敏, yjm70018@sina.cn
    • 基金项目: 国家自然科学基金(批准号: 12004351, 11734013)资助的课题.
      Corresponding author: Yang Jia-Min, yjm70018@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004351, 11734013).
    [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 340Google Scholar

    [4]

    Hu S X, Militzer B, Goncharov V N, Skupsky S 2010 Phys. Rev. Lett. 104 235003Google Scholar

    [5]

    Hu S X, Collins L A, Goncharov V N, Boehly T R, Epstein R, McCrory R L, Skupsky S 2014 Phys. Rev. E 90 033111Google Scholar

    [6]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2015 Phys. Rev. E 92 043104Google Scholar

    [7]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2016 Phys. Plasmas 23 042704Google Scholar

    [8]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [9]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [10]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [11]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [12]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [13]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [14]

    Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R, Burian T, Chalupsky J, Engelhorn K, Falcone R W, Graves C, Hajkova V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B, Wark J S 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [15]

    Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G, Emig J 2013 Phys. Rev. Lett. 110 265003Google Scholar

    [16]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [17]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys.: Conf. Ser. 112 042024Google Scholar

    [18]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [19]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [20]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [21]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [22]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [23]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [24]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [25]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [26]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lv M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [27]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radial. Transfer 81 133Google Scholar

    [28]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Physics 24 39Google Scholar

    [29]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [30]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [31]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475Google Scholar

    [32]

    Liu W J, Wang F, Li L M 2003 J. Theor. Comput. Chem. 2 257Google Scholar

    [33]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [34]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • 图 1  温稠密Ti的荧光光谱实验示意图 (a)荧光光谱测量; (b)样品处辐射源测量

    Fig. 1.  Schematic of the X-ray fluorescence spectrum experiment of warm dense Ti: (a) Measurement of the fluorescence spectrum; (b) measurement of the incident flux of the sample

    图 2  (a)样品处再发射流及入流; (b) Ti样品的密度温度演化过程模拟结果

    Fig. 2.  (a) Reemission flux and incident flux of gold at the hohlraum center; (b) the simulated density and temperature evolution of Ti sample

    图 3  不同状态Ti样品的荧光光谱 (a)原始图像; (b)解谱结果

    Fig. 3.  The X-ray fluorescence spectrum of Ti samples with different state: (a) Original images; (b) spectral results

    图 4  不同状态Ti样品$\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$相对于冷样品的变化

    Fig. 4.  Changes of $\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$ of Ti with different density and temperature relative to cold samples

  • [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 340Google Scholar

    [4]

    Hu S X, Militzer B, Goncharov V N, Skupsky S 2010 Phys. Rev. Lett. 104 235003Google Scholar

    [5]

    Hu S X, Collins L A, Goncharov V N, Boehly T R, Epstein R, McCrory R L, Skupsky S 2014 Phys. Rev. E 90 033111Google Scholar

    [6]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2015 Phys. Rev. E 92 043104Google Scholar

    [7]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2016 Phys. Plasmas 23 042704Google Scholar

    [8]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [9]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [10]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [11]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [12]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [13]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [14]

    Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R, Burian T, Chalupsky J, Engelhorn K, Falcone R W, Graves C, Hajkova V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B, Wark J S 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [15]

    Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G, Emig J 2013 Phys. Rev. Lett. 110 265003Google Scholar

    [16]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [17]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys.: Conf. Ser. 112 042024Google Scholar

    [18]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [19]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [20]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [21]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [22]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [23]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [24]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [25]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [26]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lv M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [27]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radial. Transfer 81 133Google Scholar

    [28]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Physics 24 39Google Scholar

    [29]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [30]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [31]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475Google Scholar

    [32]

    Liu W J, Wang F, Li L M 2003 J. Theor. Comput. Chem. 2 257Google Scholar

    [33]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [34]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • [1] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, 2024, 73(1): 015201. doi: 10.7498/aps.73.20231216
    [2] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20231216
    [3] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [6] 王天浩, 王坤, 张阅, 姜林村. 温稠密铝等离子体物态方程及其电离平衡研究. 物理学报, 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [7] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [8] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究. 物理学报, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [9] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究. 物理学报, 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [10] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [11] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [12] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [13] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [14] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [15] 章正杰, 孟大维, 吴秀玲, 何开华, 樊孝玉, 刘卫平, 黄利武, 郑建平. 共掺杂金红石TiO2的电子结构和红外光谱研究. 物理学报, 2011, 60(3): 037802. doi: 10.7498/aps.60.037802
    [16] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [17] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [18] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [19] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [20] 宋招权, 徐 慧, 李燕峰, 刘小良. 非对角无序和维数效应对低维无序系统电子结构的影响. 物理学报, 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
计量
  • 文章访问数:  2275
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2023-08-23
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-12-20

/

返回文章
返回