搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯竖立片层常压相变制备纳米金刚石

朱奕衡 朱志光 陈成克 蒋梅燕 李晓 鲁少华 胡晓君

引用本文:
Citation:

基于石墨烯竖立片层常压相变制备纳米金刚石

朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君

Preparation of nanodiamonds based on phase transformation of vertical sheet under atmospheric pressure

Zhu Yi-Heng, Zhu Zhi-Guang, Chen Cheng-Ke, Jiang Mei-Yan, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun
PDF
HTML
导出引用
  • 采用热丝化学气相沉积法制备了含有钽原子的石墨烯竖立片层, 并将其置于含氧环境中进行退火处理, 在常压环境中发生相变得到纳米金刚石, 并研究退火环境中氧含量变化对纳米金刚石形成的影响. 结果表明, 当退火环境气压为10 Pa和50 Pa (对应氧原子百分比为1.96%和2.04%) 时, 退火后样品形貌与结构和未处理的石墨烯片层无异; 样品100 Pa和500 Pa气压下退火后(对应氧原子百分比为2.77%和3.11%), 在其中观察到了尺寸为2—4 nm的纳米金刚石, 这些金刚石晶粒多分布于非晶碳中; 继续升高退火环境气压则发现退火后样品被大面积氧化, 石墨结构遭到严重破坏. 该研究结果为纳米金刚石的制备提供了新方法.
    A basic and important way to prepare diamond is to make graphite experience the phase transformation under the high-pressure high-temperature (HPHT) condition. However, this method needs stringent equipment and high investment cost. Recently, we proposed a method to prepare the diamond by phase transformation of graphite at atmospheric pressure with monodispersed Ta atoms. It is found that a phase transformation happens to H atoms under atmospheric pressure, but the role of O atoms has not been investigated. Here, we use tantalum wires as Ta source and heat the filaments to prepare vertical graphene containing Ta atoms in hot filament chemical vapor deposition (HFCVD) system. And then the vertical graphene layers are annealed in oxygen-containing environment, and nanodiamonds are obtained by phase transformation from the vertical graphene under atmospheric pressure. The results show that the sample morphologies are the same as the untreated vertical graphene’s, when the annealed ambient air pressure is at 10 Pa and 50 Pa with oxygen atom content of 1.96% and 2.04%, respectively; TEM tests reveal TaC and graphite but no diamond in these samples . Nanodiamond grains with the size range of 2–4 nm are observed in the amorphous carbon region of samples annealed at 100 Pa and 500 Pa air pressure with oxygen atom content increasing to 2.77% and 3.11%, respectively, indicating that oxidation facilitates the phase change from Ta-containing vertical graphene to diamond at atmospheric pressure. When the air pressure of the annealing environment rises to 1000 Pa with the oxygen atom content of 3.54%, the sample is extensively oxidized and the graphite structure is severely damaged,which means that a large number of oxygen atoms tend to disrupt the graphite structure rather than promote the phase change into diamond. These results supply a way to prepare nanodiamond and show the effect of O atoms in the graphite phase transition at atmospheric pressure.
      通信作者: 胡晓君, huxj@zjut.edu.cn
    • 基金项目: 国家自然科学基金联合重点项目(批准号: U1809210)、国家自然科学基金(批准号: 52102052, 11504325, 52002351, 50972129, 50602039)、国家国际科技合作项目(批准号: 2014DFR51160)、国家重点研发计划 (批准号: 2016YFE0133200)、浙江省自然科学基金(批准号: LQ15A040004, LY18E020013, LGC21E020001)和浙江省重点研发计划国际科技合作“一带一路”专项(批准号: 2018C04021)资助的课题.
      Corresponding author: Hu Xiao-Jun, huxj@zjut.edu.cn
    • Funds: Project supported by the Key Project of National Natural Science Foundation of China (Grant No. U1809210), the National Natural Science Foundation of China (Grant Nos. 52102052, 11504325, 52002351, 50972129, 50602039), the International Science and Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004, LY18E020013, LGC21E020001), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021).
    [1]

    Sildos I, Loot A, Kiisk V, Puust L, Hizhnyakov V, Yelisseyev A, Osvet A, Vlasov I, Kiisk V 2017 Diam. Relat. Mater. 76 27Google Scholar

    [2]

    Santacruz-Gomez Karla, Sarabia-Sainz Acosta-Elias M, Sarabia-Sainz M, Janetanakit Woraphong, Khosla Nathan, Melendrez R, Montero Martin Pedroza, Lal Ratnesh 2018 Nanotechnology 29 12.Google Scholar

    [3]

    Mochalin V N, Shenderova O, Ho D, Gogotsi Y 2012 Nat. Nanotechnol. 7 11Google Scholar

    [4]

    李莲莲, 陈冠钦 2022 金刚石与磨料磨具工程 42 543Google Scholar

    Li L L, Chen G Q 2022 Diam. Abras. Eng. 42 543Google Scholar

    [5]

    Bulut B, Gunduz O, Baydogan M, Kayali E S 2020 Int. J. Refract. Met. H. 95 105466Google Scholar

    [6]

    Chen C K, He Z, Xu A C, Hu X J 2021 Funct. Diam. 1 117Google Scholar

    [7]

    Chen C K, Mei Y S, Cui J, Xiao L, Jiang M Y, Lu S H, Hu X J 2018 Carbon 139 982Google Scholar

    [8]

    Li X, Chen H, Wang C C, Chen C K, Jiang M Y, Hu X J 2023 Diam. Relat. Mater. 136 109927Google Scholar

    [9]

    Chen P, Huang F, Yun S 2004 Mater. Res. Bull. 39 1589Google Scholar

    [10]

    Jenei Z, O'bannon E F, Weir S T, Cynn H, Lipp M J, Evans W J 2018 Nat. Commun. 9 3563Google Scholar

    [11]

    Xu X Y, Yu Z M, Zhu Y W, Wang B C 2005 J. Solid State Chem. 178 688Google Scholar

    [12]

    苗卫朋, 丁玉龙, 翟黎鹏, 包华 2019 金刚石与磨料磨具工程 39 18Google Scholar

    Miao W P, Ding Y L, Zhai L P, Bao H 2019 Diam. Abras. Eng. 39 18Google Scholar

    [13]

    Chen C, Fan D, Xu H, Jiang M, Li X, Lu S, Ke C, Hu X 2022 Carbon 196 466Google Scholar

    [14]

    Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J 2022 P. Natl. Acad. Sci. USA 119 e2201451119Google Scholar

    [15]

    Zhu Z G, Jiang C Q, Chen C K, Lu S H, Jiang M Y, Li X, Hu X J 2023 Carbon 211 118098Google Scholar

    [16]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Ostrikov K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [17]

    Cancado L G, Jorio A, Ferreira E H, Capaz R B, Moutinhc W V O, Ferrari A C 2012 Nano Lett. 11 3190Google Scholar

    [18]

    Shimada T, Sugai T, Fantini C , Souza M, Cancado L G 2005 Carbon 43 1049Google Scholar

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [20]

    Gilkes K, Sands H S, Batchelder D N, Robertson J, Milne W I 1997 Appl. Phys. Lett. 70 1980Google Scholar

    [21]

    Liu F B, Wang J D, Chen D R, Yan, D Y 2009 Chin. Phys. B 18 2041Google Scholar

    [22]

    Gnien D M 1999 Annu. Rev. Mater. Res. 29 211

  • 图 1  样品FESEM图像 (a) 未处理样品; (b) 10 Pa样品; (c) 50 Pa样品; (d) 100 Pa样品; (e) 500 Pa样品; (f) 1000 Pa样品

    Fig. 1.  FESEM images of samples: (a) Untreated sample; (b) 10 Pa sample; (c) 50 Pa sample; (d) 100 Pa sample; (e) 500 Pa sample; (f) 1000 Pa sample.

    图 2  (a) 未处理样品与不同气压下退火样品的Raman光谱; (b) 样品的ID/IG, I2D/IGID’/IG值随退火气压变化图

    Fig. 2.  (a) Raman spectra of untreated sample and annealed samples at different air pressures; (b) ID/IG, I2D/IG and ID’/IG evolution with different annealed pressure of samples.

    图 3  (a) 未处理样品的低倍率HRTEM图片, 内插图为SAED图; (b) 未处理样品的高倍率HRTEM图片, 内插图为FT变换图; (c) 10 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (d) 10 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (e) 50 Pa样品的HRTEM低倍率图片, 内插图为SAED图; (f) 50 Pa样品的高倍率HRTEM图片, 内插图为FT变换图

    Fig. 3.  (a) Low-magnification HRTEM picture of untreated sample and its inset SAED pattern; (b) high-magnification picture of untreated sample and its inset FT graph; (c) low-magnification HRTEM picture of 10 Pa sample and its inset SAED pattern; (d) high-magnification HRTEM picture of 10 Pa sample and its inset FT graph; (e) low-magnification HRTEM picture of 50 Pa sample and its inset SAED pattern; (f) high-magnification HRTEM picture of 50 Pa sample and its inset FT graph.

    图 4  (a) 100 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (b) 100 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (c)—(f) 图4(b)中框选区域放大图, FT-c, FT-d, FT-e和FT-f分别为其对应的FT变换图; (g) 100 Pa样品的能谱(TEM-EDS)图; (h) 100 Pa样品的HAADF和EDS-mapping图

    Fig. 4.  (a) Low-magnification HRTEM picture of 10 Pa sample and its inset SAED pattern; (b) high-magnification HRTEM picture of 100 Pa sample and its inset FT graph; (c)–(f) enlarged of picture high-magnification in Fig. 4(b), FT-c, FT-d, FT-e and FT-f are all FT graphs; (g) TEM-EDS of 100 Pa sample; (h) HAADF and EDS-mapping of 100 Pa sample.

    图 5  (a) 500 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (b) 500 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (c), (d) 图5(b)中框选区域放大图, FT-c和FT-d分别为对应的FT变换图; (e) 1000 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (f) 1000 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (g) 1000 Pa样品的HAADF和EDS-mapping图

    Fig. 5.  (a) Low-magnification HRTEM picture of 500 Pa sample and its inset SAED pattern; (b) high-magnification HRTEM picture of 500 Pa sample and its inset FT graph; (c), (d) enlarged images of d and e in Fig.5(b), FT-c and FT-d are FT graphs; (e) low-magnification HRTEM picture of 1000 Pa sample and its inset SAED pattern; (f) high-magnification HRTEM picture of 1000 Pa sample and its inset FT graph; (g) HAADF and EDS-mapping of 1000 Pa sample.

    图 6  (a) 未处理样品与不同气压下退火样品的XPS全谱图; (b) 样品的C 1s核心能级谱及其拟合曲线; (c) 样品表面C和O的原子百分比随退火气压变化图; (d), (e) 样品表面sp2 C, sp3 C, C—O键含量随退火气压变化图

    Fig. 6.  (a) Full range XPS spectra of untreated sample and annealed samples at different air pressures; (b) C 1s core energy level spectra and their deconvolution of samples; (c) variation of atomic content of C and O on the sample surface with annealing air pressure; (d), (e) variation of sp2-C, sp3-C, C—O and C=O content of sample surface with annealing air pressure.

  • [1]

    Sildos I, Loot A, Kiisk V, Puust L, Hizhnyakov V, Yelisseyev A, Osvet A, Vlasov I, Kiisk V 2017 Diam. Relat. Mater. 76 27Google Scholar

    [2]

    Santacruz-Gomez Karla, Sarabia-Sainz Acosta-Elias M, Sarabia-Sainz M, Janetanakit Woraphong, Khosla Nathan, Melendrez R, Montero Martin Pedroza, Lal Ratnesh 2018 Nanotechnology 29 12.Google Scholar

    [3]

    Mochalin V N, Shenderova O, Ho D, Gogotsi Y 2012 Nat. Nanotechnol. 7 11Google Scholar

    [4]

    李莲莲, 陈冠钦 2022 金刚石与磨料磨具工程 42 543Google Scholar

    Li L L, Chen G Q 2022 Diam. Abras. Eng. 42 543Google Scholar

    [5]

    Bulut B, Gunduz O, Baydogan M, Kayali E S 2020 Int. J. Refract. Met. H. 95 105466Google Scholar

    [6]

    Chen C K, He Z, Xu A C, Hu X J 2021 Funct. Diam. 1 117Google Scholar

    [7]

    Chen C K, Mei Y S, Cui J, Xiao L, Jiang M Y, Lu S H, Hu X J 2018 Carbon 139 982Google Scholar

    [8]

    Li X, Chen H, Wang C C, Chen C K, Jiang M Y, Hu X J 2023 Diam. Relat. Mater. 136 109927Google Scholar

    [9]

    Chen P, Huang F, Yun S 2004 Mater. Res. Bull. 39 1589Google Scholar

    [10]

    Jenei Z, O'bannon E F, Weir S T, Cynn H, Lipp M J, Evans W J 2018 Nat. Commun. 9 3563Google Scholar

    [11]

    Xu X Y, Yu Z M, Zhu Y W, Wang B C 2005 J. Solid State Chem. 178 688Google Scholar

    [12]

    苗卫朋, 丁玉龙, 翟黎鹏, 包华 2019 金刚石与磨料磨具工程 39 18Google Scholar

    Miao W P, Ding Y L, Zhai L P, Bao H 2019 Diam. Abras. Eng. 39 18Google Scholar

    [13]

    Chen C, Fan D, Xu H, Jiang M, Li X, Lu S, Ke C, Hu X 2022 Carbon 196 466Google Scholar

    [14]

    Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J 2022 P. Natl. Acad. Sci. USA 119 e2201451119Google Scholar

    [15]

    Zhu Z G, Jiang C Q, Chen C K, Lu S H, Jiang M Y, Li X, Hu X J 2023 Carbon 211 118098Google Scholar

    [16]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Ostrikov K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [17]

    Cancado L G, Jorio A, Ferreira E H, Capaz R B, Moutinhc W V O, Ferrari A C 2012 Nano Lett. 11 3190Google Scholar

    [18]

    Shimada T, Sugai T, Fantini C , Souza M, Cancado L G 2005 Carbon 43 1049Google Scholar

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [20]

    Gilkes K, Sands H S, Batchelder D N, Robertson J, Milne W I 1997 Appl. Phys. Lett. 70 1980Google Scholar

    [21]

    Liu F B, Wang J D, Chen D R, Yan, D Y 2009 Chin. Phys. B 18 2041Google Scholar

    [22]

    Gnien D M 1999 Annu. Rev. Mater. Res. 29 211

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [4] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [5] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [6] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [7] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [8] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [9] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [10] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [11] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [12] 秦世荣, 赵琪, 程振国, 苏丽霞, 单崇新. 纳米金刚石的分散、修饰及载药应用研究. 物理学报, 2018, 67(16): 166801. doi: 10.7498/aps.67.20180862
    [13] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [14] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [15] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究. 物理学报, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] 程正富, 龙晓霞, 郑瑞伦. 非简谐振动对纳米金刚石表面性质的影响. 物理学报, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [19] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [20] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
计量
  • 文章访问数:  2127
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-08-22
  • 上网日期:  2023-10-14
  • 刊出日期:  2024-01-20

/

返回文章
返回