搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性

任兴 于宏宇 张勇

引用本文:
Citation:

基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性

任兴, 于宏宇, 张勇

Electroluminescence efficiency and stability of near ultraviolet organic light-emitting diodes based on BCPO luminous materials

Ren Xing, Yu Hong-Yu, Zhang Yong
PDF
HTML
导出引用
  • 近十年来, 制备近紫外有机发光二极管成为有机电子学领域的研究热点之一. 但是当器件的电致发光波长延伸到400 nm以下后, 对器件中各功能层的材料选择提出了更高要求. 本实验中, 以宽带隙小分子材料BCPO(bis-4-(N-carbazolyl)phenyl)phenylphosphine oxide)为发光层, 基于BCPO的发射光谱确定了电子传输材料和空穴传输材料, 制备了电致发光峰位波长在384 nm附近的近紫外有机发光二极管. 在最佳的器件结构下, 器件的最大外量子效率达到2.98%, 最大辐射功率达到38.2 mW/cm2. 电致发光谱中波长在400 nm以下的近紫外光占比为57%. 结果表明器件在恒压模式下展示了良好的稳定性, 此外, 对影响器件稳定性的多个关键因素给予了深入的分析.
    To date, in the traditional method of obtaining near-ultraviolet (NUV) light, mercury atoms, which can create a highly toxic heavy metal contaminant, have been used. Therefore, it is an important issue to obtain NUV light by using new environmentally friendly devices. In the last decade, the fabrication of near ultraviolet organic light-emitting diodes (NUV-OLEDs) has become a research hotspot in the field of organic electronics. However, when the electroluminescence wavelength is extended to shorter than 400 nm, higher requirements are put forward for the materials used for each functional layer in these devices. In this work, a wide bandgap small molecule material of BCPO is used as the luminescent layer. The electron-transporting and hole-transporting materials are determined based on the overlaps between absorption spectra of these materials and emission spectrum of BCPO. And NUV-OLEDs with electroluminescent peak wavelength at 384 nm are prepared. By using the optimal device structure, the maximum external quantum efficiency of the device reaches 2.98%, and the maximum radiance of the device reaches 38.2 mW/cm2. In the electroluminescence spectrum, NUV light with wavelengths below 400 nm accounts for 57% of the light emission. In addition, the device demonstrates good stability when biased at two different constant voltage modes. The multiple key factors which affect the stability of the device are analyzed in detail. Firstly, it is found that the high glass transition temperature (Tg) of hole-transporting material is very important for the long-time stability of this device. The poor device stability is closely related to the low Tg temperature of hole-transporting material. Secondly, due to the widespread use of PEDOT:PSS as hole injection material in OLEDs, the electron leakage from the hole-transpor layer into the PEDOT:PSS layer may cause significant damage to the conducting polymer. When bombarded with low energy electrons, bond breakage occurs on the surface of PEDOT:PSS, followed by the release of oxygen and sulfur, resulting in changes in conductivity and oxidation reactions with molecules of hole transport material. Thirdly, the photoelectrical stability of organic molecules is the most fundamental reason that restricts the device lifetime. The aging process of material or device is directly relevant to the bond dissociation energy (BDE) of organic molecule. Generally, the BDE value of organic molecule is not high enough. As a result, molecules are prone to chemical bond breakage during electrochemical or photochemical aging. In summary, highly stable NUV-OLEDs should be fabricated by using hole-transporting materials with high Tg temperature, sufficient electron-blocking capacity, and large BDE value.
      通信作者: 张勇, yzh6127@swu.edu.cn
      Corresponding author: Zhang Yong, yzh6127@swu.edu.cn
    [1]

    连加荣, 曾鹏举 2010 现代显示 118 35Google Scholar

    Lian J R, Zeng P J 2010 Adv. Disp. 118 35Google Scholar

    [2]

    Chen M Y, Liao Y J, Lin Y, Xu T, Lan W X, Wei B, Yuan Y F, Li D L, Zhang X W 2020 J. Mater. Chem. C 8 14665Google Scholar

    [3]

    娄敬丽, 黎刚刚, 王志明, 唐本忠 2023 发光学报 44 37Google Scholar

    Lou J L, Li G G, Wang Z M, Tang B Z 2023 Chin. J. Lumin. 44 37Google Scholar

    [4]

    王瀚洋, 朱元烨, 谢凤鸣, 李艳青, 唐建新 2023 发光学报 44 140Google Scholar

    Wang H Y, Zhu Y Y, Xie F M, Li Y Q, Tang J X 2023 Chin. J. Lumin. 44 140Google Scholar

    [5]

    杨文静, 孙玥, 叶丹, 王姣, 张伟, 李晓蕾, 王先良 2017 环境与健康 34 1100Google Scholar

    Yang W J, Sun Y, Ye D, Wang J, Zhang W, Li X L, Wang X L 2017 J. Environ. Health 34 1100Google Scholar

    [6]

    Li Z G, Jia P Q, Zhao F, Kang Y K 2018 Int. J. Environ. Res. Public Health 15 2766Google Scholar

    [7]

    Mikami A, Mizuno Y, Takeda S 2008 SID Symp. Dig. Tech. Pap. 39 215Google Scholar

    [8]

    Zhang X W, You F J, Liu S Q, Mo B J, Zhang Z L, Xiong J, Cai P, Xue X G, Zhang J, Wei B 2017 Appl. Phys. Lett. 110 043301Google Scholar

    [9]

    Lin J, Guo X Y, Lü Y, Liu X Y, Wang Y 2020 ACS Appl. Mater. Interfaces 12 10717Google Scholar

    [10]

    Luo Y J, Li S B, Zhao Y H, Li C, Pang Z G, Huang Y, Yang M H, Zhou L, Zheng X J, Pu X M, Lu Z Y 2020 Adv. Mater. 32 2001248Google Scholar

    [11]

    Zhang H, Li G G, Guo X M, Zhang K, Zhang B, Guo X C, Li Y X, Fan J Z, Wang Z M, Ma D G, Tang B Z 2021 Angew. Chem. 133 22415Google Scholar

    [12]

    Li G G, Li B X, Zhang H, Guo X C, Lin C W, Chen K Q, Wang Z M, Ma D G, Tang B Z 2022 ACS Appl. Mater. Interfaces 14 10627Google Scholar

    [13]

    Chen J K, Liu H, Guo J J, Wang J H, Qiu N L, Xiao S, Chi J J, Yang D Z, Ma D G, Zhao Z J, Tang B Z 2022 Angew. Chem. 61 e202116810Google Scholar

    [14]

    Peng L, Lü J C, Xiao S, Huo Y M, Liu Y C, Ma D G, Ying S A, Yan S K 2022 Chem. Eng. J. 450 138339Google Scholar

    [15]

    马治军, 雷霆, 裴坚, 刘晨江 2013 化学进展 25 961Google Scholar

    Ma Z J, Lei T, Pei J, Liu C J 2013 Prog. Chem. 25 961Google Scholar

    [16]

    王芳芳, 陶友田, 黄维 2015 化学学报 73 9Google Scholar

    Wang F F, Tao Y T, Huang W 2015 Acta Chim. Sinica 73 9Google Scholar

    [17]

    Chou H H, Cheng C H 2010 Adv. Mater. 22 2468Google Scholar

    [18]

    Yan F, Xing G C, Chen R, Demir H V, Sun H D, Sum T C, Sun X W 2015 Appl. Phys. Lett. 106 023302Google Scholar

    [19]

    Knauer K A, Najafabadi E, Haske W, Kippelen B 2012 Appl. Phys. Lett. 101 103304Google Scholar

    [20]

    Wang S M, Wang X D, Yao B, Zhang B H, Ding J Q, Xie Z Y, Wang L X 2015 Sci. Rep. 5 12487Google Scholar

    [21]

    Chu T Y, Song O K 2007 Appl. Phys. Lett. 90 203512Google Scholar

    [22]

    Gao C H, Zhou D Y, Gu W, Shi X B, Wang Z K, Liao L S 2013 Org. Electron. 14 1177Google Scholar

    [23]

    Kim J H, Chen Y, Liu R, So F 2014 Org. Electron. 15 2381Google Scholar

    [24]

    牛泉, 郝洪敏, 林雯欣, 黄江夏 2023 发光学报 44 186Google Scholar

    Niu Q, Hao H M, Lin W X, Huang J X 2023 Chin. J. Lumin. 44 186Google Scholar

    [25]

    Van Der Gon A W D, Birgerson J, Fahlman M, Salaneck W R 2002 Org. Electron. 3 111Google Scholar

    [26]

    So F, Kondakov D 2010 Adv. Mater. 22 3762Google Scholar

    [27]

    Song W, Lee J Y 2017 Adv. Optical Mater. 5 1600901Google Scholar

    [28]

    Lee H L, Lee K H, Lee J Y 2019 Dyes and Pigments 171 107714Google Scholar

    [29]

    Dong S C, Xu L S, Tang C W 2017 Org. Electron. 42 379Google Scholar

    [30]

    Kondakov D 2008 J. Appl. Phys. 104 084520Google Scholar

  • 图 1  BCPO薄膜的发射光谱与TPBi, TpPyPB, TmPyPB薄膜的吸收光谱对比

    Fig. 1.  Comparison between emission spectrum of BCPO film and absorption spectra of TPBi, TpPyPB and TmPyPB films.

    图 2  BCPO薄膜的发射光谱与NPB, TCTA, TAPC薄膜的吸收光谱对比

    Fig. 2.  Comparison between emission spectrum of BCPO film and absorption spectra of NPB, TCTA and TAPC films.

    图 3  ITO阳极与PEDOT:PSS薄膜的透射率

    Fig. 3.  Transmission of ITO anode and PEDOT:PSS films.

    图 4  具有不同空穴传输层器件的性能对比 (a) J-V曲线; (b) R-V曲线; (c) EQE-J曲线; (d)器件结构图

    Fig. 4.  Performance comparison of devices with different hole-transporting layers: (a) J-V curves; (b) R-V curves; (c) EQE-J curves; (d) diagram of device structure.

    图 5  DEV1, DEV2, DEV3在两种恒压模式下的稳定性对比 (a) R0 = 2 mW/cm2; (b) R0 = 10 mW/cm2

    Fig. 5.  Comparison of stabilities of DEV1, DEV2 and DEV3 under two constant voltage modes: (a) R0 = 2 mW/cm2; (b) R0 = 10 mW/cm2.

    图 6  TAPC与TCTA的分子结构与化学键解离能

    Fig. 6.  Molecular structures and bond dissociation energies of TAPC and TCTA molecules.

    表 1  三种电子传输材料的性能参数对比

    Table 1.  Comparison of property parameters of three electron-transporting materials.

    材料名称 EHOMO/ELUMO/eV Eg/eV μe/(10–3 cm2·V–1·s–1) Tg/℃
    TPBi –6.2/–2.7 3.5 0.1 76
    TpPyPB –6.65/–3.04 3.61 3.4—7.9 79
    TmPyPB –6.7/–2.7 4.0 1.0 79
    下载: 导出CSV

    表 2  三种空穴传输材料的性能参数对比

    Table 2.  Comparison of property parameters of three hole-transporting materials.

    材料名称 EHOMO/ELUMO/eV Eg/eV μh/(10–3 cm2·V–1·s–1) Tg/℃
    NPB –5.5/–2.0 3.5 1.0 95
    TCTA –5.7/–2.3 3.4 0.19 151
    TAPC –5.5/–2.0 3.5 10 78
    下载: 导出CSV

    表 3  具有不同空穴传输层器件的性能对比

    Table 3.  Performance comparison of devices with different hole-transporting layers.

    器件名称 Von/V Rmax/(mW·cm–2) EQEmax/%
    DEV1 3.5 38.7 2.69
    DEV2 4.0 22.6 2.08
    DEV3 3.5 38.2 2.98
    下载: 导出CSV
  • [1]

    连加荣, 曾鹏举 2010 现代显示 118 35Google Scholar

    Lian J R, Zeng P J 2010 Adv. Disp. 118 35Google Scholar

    [2]

    Chen M Y, Liao Y J, Lin Y, Xu T, Lan W X, Wei B, Yuan Y F, Li D L, Zhang X W 2020 J. Mater. Chem. C 8 14665Google Scholar

    [3]

    娄敬丽, 黎刚刚, 王志明, 唐本忠 2023 发光学报 44 37Google Scholar

    Lou J L, Li G G, Wang Z M, Tang B Z 2023 Chin. J. Lumin. 44 37Google Scholar

    [4]

    王瀚洋, 朱元烨, 谢凤鸣, 李艳青, 唐建新 2023 发光学报 44 140Google Scholar

    Wang H Y, Zhu Y Y, Xie F M, Li Y Q, Tang J X 2023 Chin. J. Lumin. 44 140Google Scholar

    [5]

    杨文静, 孙玥, 叶丹, 王姣, 张伟, 李晓蕾, 王先良 2017 环境与健康 34 1100Google Scholar

    Yang W J, Sun Y, Ye D, Wang J, Zhang W, Li X L, Wang X L 2017 J. Environ. Health 34 1100Google Scholar

    [6]

    Li Z G, Jia P Q, Zhao F, Kang Y K 2018 Int. J. Environ. Res. Public Health 15 2766Google Scholar

    [7]

    Mikami A, Mizuno Y, Takeda S 2008 SID Symp. Dig. Tech. Pap. 39 215Google Scholar

    [8]

    Zhang X W, You F J, Liu S Q, Mo B J, Zhang Z L, Xiong J, Cai P, Xue X G, Zhang J, Wei B 2017 Appl. Phys. Lett. 110 043301Google Scholar

    [9]

    Lin J, Guo X Y, Lü Y, Liu X Y, Wang Y 2020 ACS Appl. Mater. Interfaces 12 10717Google Scholar

    [10]

    Luo Y J, Li S B, Zhao Y H, Li C, Pang Z G, Huang Y, Yang M H, Zhou L, Zheng X J, Pu X M, Lu Z Y 2020 Adv. Mater. 32 2001248Google Scholar

    [11]

    Zhang H, Li G G, Guo X M, Zhang K, Zhang B, Guo X C, Li Y X, Fan J Z, Wang Z M, Ma D G, Tang B Z 2021 Angew. Chem. 133 22415Google Scholar

    [12]

    Li G G, Li B X, Zhang H, Guo X C, Lin C W, Chen K Q, Wang Z M, Ma D G, Tang B Z 2022 ACS Appl. Mater. Interfaces 14 10627Google Scholar

    [13]

    Chen J K, Liu H, Guo J J, Wang J H, Qiu N L, Xiao S, Chi J J, Yang D Z, Ma D G, Zhao Z J, Tang B Z 2022 Angew. Chem. 61 e202116810Google Scholar

    [14]

    Peng L, Lü J C, Xiao S, Huo Y M, Liu Y C, Ma D G, Ying S A, Yan S K 2022 Chem. Eng. J. 450 138339Google Scholar

    [15]

    马治军, 雷霆, 裴坚, 刘晨江 2013 化学进展 25 961Google Scholar

    Ma Z J, Lei T, Pei J, Liu C J 2013 Prog. Chem. 25 961Google Scholar

    [16]

    王芳芳, 陶友田, 黄维 2015 化学学报 73 9Google Scholar

    Wang F F, Tao Y T, Huang W 2015 Acta Chim. Sinica 73 9Google Scholar

    [17]

    Chou H H, Cheng C H 2010 Adv. Mater. 22 2468Google Scholar

    [18]

    Yan F, Xing G C, Chen R, Demir H V, Sun H D, Sum T C, Sun X W 2015 Appl. Phys. Lett. 106 023302Google Scholar

    [19]

    Knauer K A, Najafabadi E, Haske W, Kippelen B 2012 Appl. Phys. Lett. 101 103304Google Scholar

    [20]

    Wang S M, Wang X D, Yao B, Zhang B H, Ding J Q, Xie Z Y, Wang L X 2015 Sci. Rep. 5 12487Google Scholar

    [21]

    Chu T Y, Song O K 2007 Appl. Phys. Lett. 90 203512Google Scholar

    [22]

    Gao C H, Zhou D Y, Gu W, Shi X B, Wang Z K, Liao L S 2013 Org. Electron. 14 1177Google Scholar

    [23]

    Kim J H, Chen Y, Liu R, So F 2014 Org. Electron. 15 2381Google Scholar

    [24]

    牛泉, 郝洪敏, 林雯欣, 黄江夏 2023 发光学报 44 186Google Scholar

    Niu Q, Hao H M, Lin W X, Huang J X 2023 Chin. J. Lumin. 44 186Google Scholar

    [25]

    Van Der Gon A W D, Birgerson J, Fahlman M, Salaneck W R 2002 Org. Electron. 3 111Google Scholar

    [26]

    So F, Kondakov D 2010 Adv. Mater. 22 3762Google Scholar

    [27]

    Song W, Lee J Y 2017 Adv. Optical Mater. 5 1600901Google Scholar

    [28]

    Lee H L, Lee K H, Lee J Y 2019 Dyes and Pigments 171 107714Google Scholar

    [29]

    Dong S C, Xu L S, Tang C W 2017 Org. Electron. 42 379Google Scholar

    [30]

    Kondakov D 2008 J. Appl. Phys. 104 084520Google Scholar

  • [1] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控. 物理学报, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [2] 刘举, 曹一伟, 吕全江, 杨天鹏, 米亭亭, 王小文, 刘军林. 超晶格电子阻挡层周期数对AlGaN基深紫外发光二极管性能的影响. 物理学报, 2024, 73(12): 128503. doi: 10.7498/aps.73.20231969
    [3] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射. 物理学报, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [4] 孟婧, 高博文. 新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究. 物理学报, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [5] 童三强, 王秉中, 王任. 用于提升有限口径辐射功率的紧耦合相控阵天线的设计. 物理学报, 2021, 70(20): 204101. doi: 10.7498/aps.70.20210309
    [6] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展. 物理学报, 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [7] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [8] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [9] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能. 物理学报, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [10] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管. 物理学报, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [11] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率. 物理学报, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [12] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应. 物理学报, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [13] 马凤英, 苏建坡, 郭茂田, 池泉, 陈明, 余振芳. 微腔面发射器件外量子效率研究. 物理学报, 2011, 60(6): 064203. doi: 10.7498/aps.60.064203
    [14] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展. 物理学报, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [15] 贺西平. 弯曲振动阶梯圆盘辐射阻抗的计算方法. 物理学报, 2010, 59(5): 3290-3293. doi: 10.7498/aps.59.3290
    [16] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应. 物理学报, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [17] 洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达. 磁偶极和电四极在磁各向异性介质中的辐射功率. 物理学报, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [18] 孟庆苗, 蒋继建, 王帅. 静态球对称黑洞的热质点模型及辐射功率. 物理学报, 2009, 58(11): 7486-7490. doi: 10.7498/aps.58.7486
    [19] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率. 物理学报, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [20] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
计量
  • 文章访问数:  1974
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2023-12-05
  • 上网日期:  2024-01-02
  • 刊出日期:  2024-02-20

/

返回文章
返回