搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In0.52Al0.48As/InP的正向和反向异质结在带隙附近的不同光谱现象

吴洋 胡晓 刘博文 顾溢 查访星

引用本文:
Citation:

In0.52Al0.48As/InP的正向和反向异质结在带隙附近的不同光谱现象

吴洋, 胡晓, 刘博文, 顾溢, 查访星

Different spectral features near the energy bandgaps of normal and inverse heterostructures of In0.52Al0.48As/InP

Wu Yang, Hu Xiao, Liu Bo-Wen, Gu Yi, Zha Fang-Xing
PDF
HTML
导出引用
  • 应用光电导谱(PC)和光致发光谱(PL)研究了由分子束外延在InP(100)衬底上生长In0.52Al0.48As获得的两种异质结外延结构, 分别是在InP衬底上生长InAlAs形成的正向异质结样品(样品A: In0.52Al0.48As/InP)和InAlAs层继续生长InP形成的上层为反向异质结的双异质结样品(样品B: InP/In0.52Al0.48As/InP). PL和PC实验采用光从表面入射激发的测量构型, 样品测量温度为77 K. 样品A的PC谱显示, 在激发光能量大于表面In0.52Al0.48As层的带隙时出现了电导陡降的反常变化, 还在916 nm波长处呈现一小的电导峰结构. PL谱对应此波长位置则出现很强的发光峰. 样品B则未观察到上述光谱特征, 该差异可从两类异质结不同的界面电子结构获得解释.
    Photoconductivity (PC) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize two heterostructure configurations of InAlAs/InP grown by molecular beam epitaxy (MBE) on the InP (100) substrate. The sample A is the type called normal heterostructure, which has an In0.52Al0.48As layer grown on InP, while sample B is called the inverse type formed by an InP cap layer on In0.52Al0.48As. The front excitation was employed in both PC experiment and PL experiment and the measurements were conducted at 77 K. The PC spectrum of sample A shows an abnormal step-like drop when the photon energy is larger than the energy band gap of In0.52Al0.48As. The phenomenon implies that the conductance of sample is a multilayer effect including the contribution of interfacial two-dimensional electron gas (2DEG). Moreover, a conductance peak is observed at 916 nm below the bandgap of InP. Accordingly, an intense luminescent peak at the wavelength manifests in the PL spectrum. The origin of the 916 nm peak is attributed to the recombination of 2DEG electrons with the valence band holes excited near the interface. However, the spectral feature of the above energy does not exist in both PC and PL spectra of sample B. This difference may be explained by the different interface electronic structures of the inverse interface. For the latter case, considering that a graded variation in In-As-P composition is related to the inverse interface of InP/InAlAs, the band bending effect should be weak. In such a case, the bound energy of 2DEG in the interface potential well is raised closer to the conductance band of the bulk. Consequently, the recombination energy of 2DEG at the inverse interface with the holes in the valence band is close to the band-to-band transition of InP bulk and the luminescence is difficult to be distinguished from that of bulk InP. The work also demonstrates that the comparative study with both PC technique and PL technique is helpful to provide a full insight into the interface electronic property.
      通信作者: 顾溢, guyi@mail.sitp.ac.cn ; 查访星, fxzha@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61874069)资助的课题.
      Corresponding author: Gu Yi, guyi@mail.sitp.ac.cn ; Zha Fang-Xing, fxzha@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61874069).
    [1]

    Burstein L, Shapira Y, Bennett B R, Alamo J A D 1996 J. Appl. Phys 78 7163Google Scholar

    [2]

    Holthoff E L, Heaps D A, Pellegrino P M 2010 IEEE Sens. J. 10 572Google Scholar

    [3]

    Demir I, Elagoz S 2017 Superlattices Microstruct. 104 140Google Scholar

    [4]

    Ramirez D A, Hayat M M, Karve G, Campbell J C, Teich M. C 2005 IEEE Leos Meeting Conference. IEEE Sydney NSW Australia, October 22–28, 2005 p387

    [5]

    Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2003 Physica E 17 229Google Scholar

    [6]

    Yerino C D, Liang B, Huffaker D L, Simmonds P J, Lee M L, 2017 J. Vac. Sci. Technol., B 35 010801Google Scholar

    [7]

    Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2002 Mater Sci. Eng. , C 21 231Google Scholar

    [8]

    Bohrer J, Krost A, Heitz R, Heinrichsdorff F, Eckey L, Bimberg D, Cerva H 1997 Appl. Phys. Lett. 68 1072Google Scholar

    [9]

    Vignaud D, Wallart X, Mollot F, Sermage B 1998 J. Appl. Phys. 84 2138Google Scholar

    [10]

    Vignaud D, Wallart X, Mollot F 1998 J. Appl. Phys. 76 2324Google Scholar

    [11]

    Duez V, Vanbeìsien O, Lippens D, Vignaud D, Wallart X, Mollot F 1999 J. Appl. Phys. 85 2202Google Scholar

    [12]

    Pocas L C, Duarte J L, Dias I F L, Laureto E, Lourenco S A, Filho, Toginho D O, Meneses E A, Mazzaro I, Harmand J C 2002 J. Appl. Phys. 91 8999Google Scholar

    [13]

    Gocalinska A M, Mura E E, Manganaro M, Juska G, Pelucchi E 2020 Phys. Rev. B 101 165310Google Scholar

    [14]

    Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2018 J. Alloys Compd. 736 29Google Scholar

    [15]

    Esmaielpour H, Whiteside V R, Hirst L C, Tischler J G, Walters R J, Sellers I R 2017 J. Appl. Phys. 121 235301Google Scholar

    [16]

    Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2019 Appl. Phys. A 125 134Google Scholar

    [17]

    Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2020 J. Appl. Phys. 59 022001Google Scholar

    [18]

    Madelung O 2004 Semiconductors: Data Handbook (1st Ed.) (New York: Springer-Heidelberg Press) p139

    [19]

    Gong B, Zha F X, 2020 Rev. Sci. Instrum. 91 013105Google Scholar

    [20]

    Hurd C M, McAlister S P, McKinnon W R, Stewart B R, Day D J, Mandeville P, SpringThorpe A J 1988 J. Appl. Phys. 63 4706Google Scholar

    [21]

    Meng X, Tan C H, Dimler S, David J P R, Ng J S 2014 Opt. Express 22 22608Google Scholar

    [22]

    Gilinsky A M, Dmitriev D V, Toropov A I, Zhuravlev K S 2017 Semicond. Sci. Technol. 32 095009Google Scholar

    [23]

    Bergman J P, Lundstrom T, Monemar B, Amano H, Akasaki I 1996 Appl. Phys. Lett. 69 3456Google Scholar

  • 图 1  光电导谱实验光路图. 内插图示意性给出光电导信号取样电路

    Fig. 1.  The setup of photoconductive (PC) spectroscopy experiment. The inset is the schematic plot of electric circuit of sampling the PC signal.

    图 2  InAlAs/InP的正向结构(Sample A) (a)和双异质结构(Sample B)(b)的PC实验结果; (c) 测量构型

    Fig. 2.  The PC measurement results of the normal heterostructure (Sample A) (a) and double heterostructure (Sample B) (b) of InAlAs/InP; (c) the schematic of measurement configuration.

    图 3  (a) InAlAs/InP正向界面结构和(b) InP/InAlAs/InP双异质界面结构能带图

    Fig. 3.  The energy band diagrams of (a) InAlAs/InP heterostructure with the normal interface and (b) InP/InAlAs/InP double heterostructure.

    图 4  正向异质结样品和双异质结样品的77 K光致发光谱

    Fig. 4.  The PL spectra of normal heterostructure and double heterostructure samples measured at 77 K.

  • [1]

    Burstein L, Shapira Y, Bennett B R, Alamo J A D 1996 J. Appl. Phys 78 7163Google Scholar

    [2]

    Holthoff E L, Heaps D A, Pellegrino P M 2010 IEEE Sens. J. 10 572Google Scholar

    [3]

    Demir I, Elagoz S 2017 Superlattices Microstruct. 104 140Google Scholar

    [4]

    Ramirez D A, Hayat M M, Karve G, Campbell J C, Teich M. C 2005 IEEE Leos Meeting Conference. IEEE Sydney NSW Australia, October 22–28, 2005 p387

    [5]

    Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2003 Physica E 17 229Google Scholar

    [6]

    Yerino C D, Liang B, Huffaker D L, Simmonds P J, Lee M L, 2017 J. Vac. Sci. Technol., B 35 010801Google Scholar

    [7]

    Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2002 Mater Sci. Eng. , C 21 231Google Scholar

    [8]

    Bohrer J, Krost A, Heitz R, Heinrichsdorff F, Eckey L, Bimberg D, Cerva H 1997 Appl. Phys. Lett. 68 1072Google Scholar

    [9]

    Vignaud D, Wallart X, Mollot F, Sermage B 1998 J. Appl. Phys. 84 2138Google Scholar

    [10]

    Vignaud D, Wallart X, Mollot F 1998 J. Appl. Phys. 76 2324Google Scholar

    [11]

    Duez V, Vanbeìsien O, Lippens D, Vignaud D, Wallart X, Mollot F 1999 J. Appl. Phys. 85 2202Google Scholar

    [12]

    Pocas L C, Duarte J L, Dias I F L, Laureto E, Lourenco S A, Filho, Toginho D O, Meneses E A, Mazzaro I, Harmand J C 2002 J. Appl. Phys. 91 8999Google Scholar

    [13]

    Gocalinska A M, Mura E E, Manganaro M, Juska G, Pelucchi E 2020 Phys. Rev. B 101 165310Google Scholar

    [14]

    Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2018 J. Alloys Compd. 736 29Google Scholar

    [15]

    Esmaielpour H, Whiteside V R, Hirst L C, Tischler J G, Walters R J, Sellers I R 2017 J. Appl. Phys. 121 235301Google Scholar

    [16]

    Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2019 Appl. Phys. A 125 134Google Scholar

    [17]

    Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2020 J. Appl. Phys. 59 022001Google Scholar

    [18]

    Madelung O 2004 Semiconductors: Data Handbook (1st Ed.) (New York: Springer-Heidelberg Press) p139

    [19]

    Gong B, Zha F X, 2020 Rev. Sci. Instrum. 91 013105Google Scholar

    [20]

    Hurd C M, McAlister S P, McKinnon W R, Stewart B R, Day D J, Mandeville P, SpringThorpe A J 1988 J. Appl. Phys. 63 4706Google Scholar

    [21]

    Meng X, Tan C H, Dimler S, David J P R, Ng J S 2014 Opt. Express 22 22608Google Scholar

    [22]

    Gilinsky A M, Dmitriev D V, Toropov A I, Zhuravlev K S 2017 Semicond. Sci. Technol. 32 095009Google Scholar

    [23]

    Bergman J P, Lundstrom T, Monemar B, Amano H, Akasaki I 1996 Appl. Phys. Lett. 69 3456Google Scholar

  • [1] 柏文庆, 杨江涛, 杨翠红, 陈云云. 电磁场调制下的应变黑磷烯带间光电导. 物理学报, 2024, 73(13): 137803. doi: 10.7498/aps.73.20240445
    [2] 邵军, 陈熙仁, 王嫚, 陆卫. 红外调制光致发光光谱技术:从宽波段覆盖到微区高通量测量. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241491
    [3] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性. 物理学报, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [4] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [5] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [6] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究. 物理学报, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [7] 董占民, 孙红三, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [8] 冀子武, 郑雨军, 徐现刚, 鲁云. ZnSe/BeTe Ⅱ型量子阱中界面结构对发光特性的影响. 物理学报, 2010, 59(11): 7986-7990. doi: 10.7498/aps.59.7986
    [9] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [10] 李龙龙, 徐文, 曾雉. 转移矩阵理论及其在Ⅲ/Ⅴ族半导体量子阱体系中的应用. 物理学报, 2009, 58(13): 266-S271. doi: 10.7498/aps.58.266
    [11] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [12] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [13] 徐波, 余庆选, 吴气虹, 廖源, 王冠中, 方容川. 应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究. 物理学报, 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [14] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [15] 邵 军. Ti掺杂ZnTe体材料的优化光致发光光谱. 物理学报, 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
    [16] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [17] 张德恒, 刘云燕, 张德骏. 用MOCVD方法制备的n型GaN薄膜紫外光电导. 物理学报, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
    [18] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究. 物理学报, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [19] 祝传刚, 徐彭寿, 陆尔东, 徐法强, 潘海斌. CH3CSNH2钝化对铁磁金属与GaAs界面扩散的影响. 物理学报, 2001, 50(11): 2212-2216. doi: 10.7498/aps.50.2212
    [20] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究. 物理学报, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
计量
  • 文章访问数:  2077
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-10-17
  • 上网日期:  2023-10-24
  • 刊出日期:  2024-01-20

/

返回文章
返回